• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
  • Articles
  • News
  • Events
  • Advertize
  • Jobs
  • Courses
  • Contact
  • (0)
  • LoginRegister
    • Facebook
    • LinkedIn
    • RSS
      Articles
      News
      Events
      Job Posts
    • Twitter
Datafloq

Datafloq

Data and Technology Insights

  • Categories
    • Big Data
    • Blockchain
    • Cloud
    • Internet Of Things
    • Metaverse
    • Robotics
    • Cybersecurity
    • Startups
    • Strategy
    • Technical
  • Big Data
  • Blockchain
  • Cloud
  • Metaverse
  • Internet Of Things
  • Robotics
  • Cybersecurity
  • Startups
  • Strategy
  • Technical

Mixed Data: The Simplest Explanation of Big Data

Dr Mark van Rijmenam / 3 min read.
August 21, 2014
Datafloq AI Score
×

Datafloq AI Score: 78

Datafloq enables anyone to contribute articles, but we value high-quality content. This means that we do not accept SEO link building content, spammy articles, clickbait, articles written by bots and especially not misinformation. Therefore, we have developed an AI, built using multiple built open-source and proprietary tools to instantly define whether an article is written by a human or a bot and determine the level of bias, objectivity, whether it is fact-based or not, sentiment and overall quality.

Articles published on Datafloq need to have a minimum AI score of 60% and we provide this graph to give more detailed information on how we rate this article. Please note that this is a work in progress and if you have any suggestions, feel free to contact us.

floq.to/PG29p

Big Data is here to stay and it is having a profound effect on businesses and societies. That having said; there are still so many organisations that have no clue about what Big Data is. Big Data means different things for different people, organisations and industries. While it is true that Big Data has different advantages and possibilities for different organisations and industries, the definition of Big Data can and should be the same for everyone. Especially because that would be beneficial for the acceptance, and therefore application, of Big Data, resulting in more innovation and economic growth.

Therefore, lets dive a bit deeper in the meaning of Big Data and the different components of Big Data. As I have mentioned before, there are 7 Vs that describe and affect Big Data: Apart from Volume, Variety and Velocity these are Variability, Veracity, Visualization and of course Value. These Vs provide a guideline to what the different components of Big Data are and what the different aspects of a Big Data strategy are. Rather important when you want to start developing a Big Data strategy for your organization.

A shared understanding of what Big Data is and what it can do for you, regardless of the type of organisation or industry that you operate in, is vital for the success of a Big Data strategy. The fact that there are many different definitions present on the web does not make things easier. A short overview of the different definitions:

Wikipedia says: Big Data is an all-encompassing term for any collection of data sets so large and complex that it becomes difficult to process using on-hand data management tools or traditional data processing applications.

Microsoft says: Big Data is the term increasingly used to describe the process of applying serious computing power the latest in machine learning and artificial intelligence to seriously massive and often highly complex sets of information.

Mayer-Schnberger & Cuckier say: Big Data refers to our burgeoning ability to crunch vast collections of information, analyze it instantly, and draw sometimes profoundly surprising conclusions from it.


Interested in what the future will bring? Download our 2023 Technology Trends eBook for free.

Consent

IBM says: Big Data is being generated by everything around us at all times. Every digital process and social media exchange produces it. Systems, sensors and mobile devices transmit it. Big data is arriving from multiple sources at an alarming velocity, volume and variety.

And there are countless more definitions as this overview shows you. The question then is of course, why another definition? Because most of the definitions that I have seen are misleading and do not contribute in ensuring more organisations start to develop a Big Data strategy.

Almost all definitions focus on the volume part of Big Data and while we are indeed living in an era that more data is being created every day, there are very few organisations that deal with Exabytes or let alone Petabytes of data. The result is that many organisations ask themselves the question: Why should I develop a Big Data strategy, because I do not have so much data?

Therefore, the term Big Data should focus a lot more on the variety aspect of it, and not the volume. I like to call this Mixed Data as the combination of different data sources, internal or external, are what provides the best insights, whether real-time or not, and you do not require massive amounts of data to achieve that. There are ample examples of organisations achieving fascinating insights by combining data sources and this can also achieved by small and medium enterprises.

It is not about the volume of data, but it is all the insights derived from combining several, smaller, datasets, making Big Data achievable for organisations of any size or in any industry. Therefore, the simplest explanation of Big Data is: Mixed Data.

Categories: Big Data
Tags: Big Data, big data strategy, insights, mixed data, organisations, variety, volume

About Dr Mark van Rijmenam

Dr Mark van Rijmenam, CSP is a leading strategic futurist keynote speaker who thinks about how technology changes organisations, society and the metaverse. He is known as The Digital Speaker, and he is a 5x author and entrepreneur.

Primary Sidebar

E-mail Newsletter

Sign up to receive email updates daily and to hear what's going on with us!

Publish
AN Article
Submit
a press release
List
AN Event
Create
A Job Post

Related Articles

The Advantages of IT Staff Augmentation Over Traditional Hiring

May 4, 2023 By Mukesh Ram

The State of Digital Asset Management in 2023

May 3, 2023 By pimcoremkt

Test Data Management – Implementation Challenges and Tools Available

May 1, 2023 By yash.mehta262

Related Jobs

  • Software Engineer | South Yorkshire, GB - February 07, 2023
  • Software Engineer with C# .net Investment House | London, GB - February 07, 2023
  • Senior Java Developer | London, GB - February 07, 2023
  • Software Engineer – Growing Digital Media Company | London, GB - February 07, 2023
  • LBG Returners – Senior Data Analyst | Chester Moor, GB - February 07, 2023
More Jobs

Tags

AI Amazon analysis analytics application Artificial Intelligence BI Big Data business China Cloud Companies company crypto customers Data design development digital engineer engineering environment experience future Google+ government Group health information learning machine learning mobile news public research security services share skills social social media software solutions strategy technology

Related Events

  • 6th Middle East Banking AI & Analytics Summit 2023 | Riyadh, Saudi Arabia - May 10, 2023
  • Data Science Salon NYC: AI & Machine Learning in Finance & Technology | The Theater Center - December 7, 2022
  • Big Data LDN 2023 | Olympia London - September 20, 2023
More events

Related Online Courses

  • Oracle Cloud Data Management Foundations Workshop
  • Data Science at Scale
  • Statistics with Python
More courses

Footer


Datafloq is the one-stop source for big data, blockchain and artificial intelligence. We offer information, insights and opportunities to drive innovation with emerging technologies.

  • Facebook
  • LinkedIn
  • RSS
  • Twitter

Recent

  • 5 Reasons Why Modern Data Integration Gives You a Competitive Advantage
  • 5 Most Common Database Structures for Small Businesses
  • 6 Ways to Reduce IT Costs Through Observability
  • How is Big Data Analytics Used in Business? These 5 Use Cases Share Valuable Insights
  • How Realistic Are Self-Driving Cars?

Search

Tags

AI Amazon analysis analytics application Artificial Intelligence BI Big Data business China Cloud Companies company crypto customers Data design development digital engineer engineering environment experience future Google+ government Group health information learning machine learning mobile news public research security services share skills social social media software solutions strategy technology

Copyright © 2023 Datafloq
HTML Sitemap| Privacy| Terms| Cookies

  • Facebook
  • Twitter
  • LinkedIn
  • WhatsApp

In order to optimize the website and to continuously improve Datafloq, we use cookies. For more information click here.

settings

Dear visitor,
Thank you for visiting Datafloq. If you find our content interesting, please subscribe to our weekly newsletter:

Did you know that you can publish job posts for free on Datafloq? You can start immediately and find the best candidates for free! Click here to get started.

Not Now Subscribe

Thanks for visiting Datafloq
If you enjoyed our content on emerging technologies, why not subscribe to our weekly newsletter to receive the latest news straight into your mailbox?

Subscribe

No thanks

Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

Necessary Cookies

Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.

If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.

Marketing cookies

This website uses Google Analytics to collect anonymous information such as the number of visitors to the site, and the most popular pages.

Keeping this cookie enabled helps us to improve our website.

Please enable Strictly Necessary Cookies first so that we can save your preferences!