• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
  • Articles
  • News
  • Events
  • Advertize
  • Jobs
  • Courses
  • Contact
  • (0)
  • LoginRegister
    • Facebook
    • LinkedIn
    • RSS
      Articles
      News
      Events
      Job Posts
    • Twitter
Datafloq

Datafloq

Data and Technology Insights

  • Categories
    • Big Data
    • Blockchain
    • Cloud
    • Internet Of Things
    • Metaverse
    • Robotics
    • Cybersecurity
    • Startups
    • Strategy
    • Technical
  • Big Data
  • Blockchain
  • Cloud
  • Metaverse
  • Internet Of Things
  • Robotics
  • Cybersecurity
  • Startups
  • Strategy
  • Technical

Patterns Recur In Analytics Just Like In Nature

Bill Franks / 4 min read.
June 21, 2016
Datafloq AI Score
×

Datafloq AI Score: 76.33

Datafloq enables anyone to contribute articles, but we value high-quality content. This means that we do not accept SEO link building content, spammy articles, clickbait, articles written by bots and especially not misinformation. Therefore, we have developed an AI, built using multiple built open-source and proprietary tools to instantly define whether an article is written by a human or a bot and determine the level of bias, objectivity, whether it is fact-based or not, sentiment and overall quality.

Articles published on Datafloq need to have a minimum AI score of 60% and we provide this graph to give more detailed information on how we rate this article. Please note that this is a work in progress and if you have any suggestions, feel free to contact us.

floq.to/EKtC5

I have always loved science and math, and thats why I got into statistics and focused on analytics for a career. One thing that has always fascinated me is how certain patterns show up again and again in different places across nature and mathematics. When looking at two seemingly unrelated topics, it suddenly becomes clear that there is actually quite a strong linkage between the two and that they are simply different examples of the same underlying concept.

One example of this is the Fibonacci sequence which shows up in nature regularly in places such as the way sea shell spirals grow and the pattern of seeds in a sunflower. I recently came across a terrific example of the concept of similar patterns at work within the realm of data and analytics.

A Recurring Pattern in Analytics

I recently took part in an event (see a summary video here) where professor Eric Bradlow of Wharton gave a presentation about research hes done on what he calls clumpiness in customer purchasing. Eric and I got excited about a tie between Erics formal work on customer clumpiness and some work my team had done a few years prior around store sales forecasts. My team had effectively identified a very similar situation in a totally different setting.

This was an important realization because I consider it to be a powerful reinforcement when formal research and real world project work independently confirm the same concept. The two situations were not directly comparable – individual customer purchases and store level product sales – but they did share some similar mathematics under the hood.

Clumpy Data and Customer Purchasing

The central theme of Eric Bradlows research and talk was that while some customers purchase in a consistent pattern over time, others are quite clumpy. Some customers will not buy for a period of time, but then buy in rapid succession before pausing again. He likened this pattern to binge watching on a streaming content service.

Far from being just an academically interesting pattern, his research shows that accounting for the clumpiness of a customers purchasing will increase the power of standard customer behavioral models. The recommendation is, therefore, to embrace and account for clumpy purchasing instead of just making a note of its existence. His research focused upon a method to do that.

Lumpy Data and Store Sales

In our case, we were hired by a large retailer to help them better forecast what they called lumpy demand in some of their products. The standard forecasting algorithms all make certain assumptions about sales patterns, including a fairly regular cadence of purchasing, and many of this retailers products broke those assumptions. This was leading to forecasts that were not as accurate as expected or required.


Interested in what the future will bring? Download our 2023 Technology Trends eBook for free.

Consent

In the retailers case, imagine a product like floor tiles. Not a single box of a given tile will sell for a number of weeks or months. However, when it does sell, many boxes will be sold to support a kitchen or bath remodel. Therefore, it is a tricky balance to figure out how much inventory to carry on hand and when to require a special order. There were a variety of factors to take into account including inventory carrying cost and the frequency and magnitude of the lumpy sales, among others.

You Say Clumpy, I Say Lumpy

As Eric Bradlow found for customer purchasing, we had also found that it was possible to account for the lumpy demand of products in a store and provide better forecasts. By accounting for the lumpiness in sales, the models were able to turn what had been noise in the data into information utilized by the models. Eric Bradlow called it clumpy, we called it lumpy, but we were all describing the same principal and seeing the same general pattern!

This experience led me to consider where else it would be possible to identify the same fundamental patterns across different types of data and analytics. I believe it is more than an academic exercise. If a certain pattern has been handled already in another context, we can potentially vastly shortcut our effort to handle it within a new context.

In the end, I dont care if you call it clumpy, lumpy, or something else. What I do care about is that you look for the pattern in your analytics efforts and make use of what has already been done to deal with it. Much like the Fibonacci sequence appears repeatedly in nature, there are recurring patterns in data that, once recognized, can improve both our analytics and our efficiency in creating them.

Originally published by the International Institute for Analytics

Image: Wikipedia Commons

Categories: Big Data
Tags: analytics, best practices, Big Data, customer, patterns

About Bill Franks

Bill Franks is an internationally recognized chief analytics officer who is a thought leader, speaker, consultant, and author focused on analytics and data science. Franks is also the author of Winning The Room, 97 Things About Ethics Everyone In Data Science Should Know, Taming The Big Data Tidal Wave, and The Analytics Revolution. His work has spanned clients in a variety of industries for companies ranging in size from Fortune 100 companies to small non-profit organizations. You can learn more at https://www.bill-franks.com.

Primary Sidebar

E-mail Newsletter

Sign up to receive email updates daily and to hear what's going on with us!

Publish
AN Article
Submit
a press release
List
AN Event
Create
A Job Post

Related Articles

The Advantages of IT Staff Augmentation Over Traditional Hiring

May 4, 2023 By Mukesh Ram

The State of Digital Asset Management in 2023

May 3, 2023 By pimcoremkt

Test Data Management – Implementation Challenges and Tools Available

May 1, 2023 By yash.mehta262

Related Jobs

  • Software Engineer | South Yorkshire, GB - February 07, 2023
  • Software Engineer with C# .net Investment House | London, GB - February 07, 2023
  • Senior Java Developer | London, GB - February 07, 2023
  • Software Engineer – Growing Digital Media Company | London, GB - February 07, 2023
  • LBG Returners – Senior Data Analyst | Chester Moor, GB - February 07, 2023
More Jobs

Tags

AI Amazon analysis analytics application Artificial Intelligence BI Big Data business China Cloud Companies company crypto customers Data design development digital engineer engineering environment experience future Google+ government Group health information learning machine learning mobile news public research security services share skills social social media software solutions strategy technology

Related Events

  • 6th Middle East Banking AI & Analytics Summit 2023 | Riyadh, Saudi Arabia - May 10, 2023
  • Data Science Salon NYC: AI & Machine Learning in Finance & Technology | The Theater Center - December 7, 2022
  • Big Data LDN 2023 | Olympia London - September 20, 2023
More events

Related Online Courses

  • Oracle Cloud Data Management Foundations Workshop
  • Data Science at Scale
  • Statistics with Python
More courses

Footer


Datafloq is the one-stop source for big data, blockchain and artificial intelligence. We offer information, insights and opportunities to drive innovation with emerging technologies.

  • Facebook
  • LinkedIn
  • RSS
  • Twitter

Recent

  • 5 Reasons Why Modern Data Integration Gives You a Competitive Advantage
  • 5 Most Common Database Structures for Small Businesses
  • 6 Ways to Reduce IT Costs Through Observability
  • How is Big Data Analytics Used in Business? These 5 Use Cases Share Valuable Insights
  • How Realistic Are Self-Driving Cars?

Search

Tags

AI Amazon analysis analytics application Artificial Intelligence BI Big Data business China Cloud Companies company crypto customers Data design development digital engineer engineering environment experience future Google+ government Group health information learning machine learning mobile news public research security services share skills social social media software solutions strategy technology

Copyright © 2023 Datafloq
HTML Sitemap| Privacy| Terms| Cookies

  • Facebook
  • Twitter
  • LinkedIn
  • WhatsApp

In order to optimize the website and to continuously improve Datafloq, we use cookies. For more information click here.

settings

Dear visitor,
Thank you for visiting Datafloq. If you find our content interesting, please subscribe to our weekly newsletter:

Did you know that you can publish job posts for free on Datafloq? You can start immediately and find the best candidates for free! Click here to get started.

Not Now Subscribe

Thanks for visiting Datafloq
If you enjoyed our content on emerging technologies, why not subscribe to our weekly newsletter to receive the latest news straight into your mailbox?

Subscribe

No thanks

Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

Necessary Cookies

Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.

If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.

Marketing cookies

This website uses Google Analytics to collect anonymous information such as the number of visitors to the site, and the most popular pages.

Keeping this cookie enabled helps us to improve our website.

Please enable Strictly Necessary Cookies first so that we can save your preferences!