• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
  • Articles
  • News
  • Events
  • Advertize
  • Jobs
  • Courses
  • Contact
  • (0)
  • LoginRegister
    • Facebook
    • LinkedIn
    • RSS
      Articles
      News
      Events
      Job Posts
    • Twitter
Datafloq

Datafloq

Data and Technology Insights

  • Categories
    • Big Data
    • Blockchain
    • Cloud
    • Internet Of Things
    • Metaverse
    • Robotics
    • Cybersecurity
    • Startups
    • Strategy
    • Technical
  • Big Data
  • Blockchain
  • Cloud
  • Metaverse
  • Internet Of Things
  • Robotics
  • Cybersecurity
  • Startups
  • Strategy
  • Technical

MasterCard Helps Retailers Perform Better with Big Data

Dr Mark van Rijmenam / 3 min read.
December 17, 2013
Datafloq AI Score
×

Datafloq AI Score: 60

Datafloq enables anyone to contribute articles, but we value high-quality content. This means that we do not accept SEO link building content, spammy articles, clickbait, articles written by bots and especially not misinformation. Therefore, we have developed an AI, built using multiple built open-source and proprietary tools to instantly define whether an article is written by a human or a bot and determine the level of bias, objectivity, whether it is fact-based or not, sentiment and overall quality.

Articles published on Datafloq need to have a minimum AI score of 60% and we provide this graph to give more detailed information on how we rate this article. Please note that this is a work in progress and if you have any suggestions, feel free to contact us.

floq.to/5hESq

It may be obvious that the massive credit card company Mastercard is heavily involved in big data. They have over 1.9 billion credit cards world wide that do over 65 billion transactions per year. They have over 32 million online and offline merchants that accept credit cards from Mastercard and 22.000 issuers and their credit cards are accepted in 210 countries. They use 700.000 rules to automatically clean, aggregate and augment their over 10 Petabytes of data. Apart from of course preventing fraudulent behaviour and identifying and preventing fraudulent transaction before they occur, Mastercard applies big data in another innovative way. It knows what everyone buys and they are using big data techniques to offer reports, insights, customer information and forecasts to their merchants.

The data that MasterCard obtains is however still not yet ready to use. With each transaction they receive data regarding the amount of the transaction, the merchant name, the time, date and the credit card number. They then strip the account number and make the data anonymous, according to Gary Kearns, group executive for the company’s information services business in an article on ZDNet. However the problem is that the data obtained is messy as the name of the merchant on a point-of-sale machine is a free-text field, resulting in many different names for the same merchants, retail chains or businesses. In the past years MasterCard has worked on creating the rules, algorithms and engines to clean such data and make it usable.

As a result MasterCard most-funded big data startups currently. Together they will offer joint products using MasterCard’s databases and Mu Sigma’s analytics technology.

One of such products is that MasterCard decided to sell specific customer segment information to its merchants. Of course, as all personal identifiable information is stripped, no private information is shared, but specifically it sells information on detailed customer segments and spending patterns. MasterCard crunches all the data that it can get its hands on, including over five years of historical data, and consequently creates segments about customers that are loyal to a certain product category or store or on other specific patterns. This provides great insights. A nice example is that the data shows that every city has its own spending DNA as the below image from a presentation by Gary Kearns shows:


Interested in what the future will bring? Download our 2023 Technology Trends eBook for free.

Consent

MasterCard spending segments

Based on the transaction data MasterCard can create very detailed segments of its customers. Something bought at a music store for example could reveal that the person is a musician. Regular restaurant payments reveal that the person enjoys dining and going out. This type of information helps MasterCard as well as its merchants to better understand its customers and create 360 degrees views in real-time based on customer spending.

MasterCard has big plans with its data as can be shown by the recent opening of an Advanced Analytics Centre of Excellence in India. This data centre helps MasterCard to even better analyse global spending trends, an important key differentiator for MasterCard. Gary Kearns explained to PYMNTS that one of the centre’s key missions is to monetize its data and better deliver “unique solutions” and “actionable insights.

For MasterCard, big data is big business and with all their data at hand they are helping merchants gain better insights and more revenue while in the mean time grow their own business. Real-time data and analytics have a big impact on MasterCards merchants and MasterCard can help them find previously hidden opportunities. At the World Retail Congress Asia Pacific 2013, Andy Mantis, group head of Business Solutions, MasterCard Advisors shared some insights regarding this innovative big data approach. To read more about how MasterCard thinks of big data, head over to their big data blogs.

Categories: Big Data
Tags: algorithms, analytics, Data, insights, merchants, organisations, retailers, strategy

About Dr Mark van Rijmenam

Dr Mark van Rijmenam, CSP is a leading strategic futurist keynote speaker who thinks about how technology changes organisations, society and the metaverse. He is known as The Digital Speaker, and he is a 5x author and entrepreneur.

Primary Sidebar

E-mail Newsletter

Sign up to receive email updates daily and to hear what's going on with us!

Publish
AN Article
Submit
a press release
List
AN Event
Create
A Job Post

Related Articles

How BlaBlaCar Built a Practical Data Mesh to Support Self-Service Analytics at Scale

March 23, 2023 By Barr Moses

How Blockchain Technology Can Enhance Fintech dApp Development

March 23, 2023 By justinalexatechie

The need for extensive data to make decisions more effectively and quickly

March 23, 2023 By Rosalind Desai

Related Jobs

  • Software Engineer | South Yorkshire, GB - February 07, 2023
  • Software Engineer with C# .net Investment House | London, GB - February 07, 2023
  • Senior Java Developer | London, GB - February 07, 2023
  • Software Engineer – Growing Digital Media Company | London, GB - February 07, 2023
  • LBG Returners – Senior Data Analyst | Chester Moor, GB - February 07, 2023
More Jobs

Tags

AI Amazon analysis analytics app application Artificial Intelligence BI Big Data blockchain business China Cloud Companies company costs crypto Data development digital environment experience finance financial future Google+ government information machine learning market mobile Musk news public research security share skills social social media software startup strategy technology twitter

Related Events

  • 6th Middle East Banking AI & Analytics Summit 2023 | Riyadh, Saudi Arabia - May 10, 2023
  • Data Science Salon NYC: AI & Machine Learning in Finance & Technology | The Theater Center - December 7, 2022
  • Big Data LDN 2023 | Olympia London - September 20, 2023
More events

Related Online Courses

  • Sneak Peek: Dartmouth’s Digital Transformation Certificate
  • Advancing Construction Analytics 2023
  • Digital Marketing World Forum Global 2023
More courses

Footer


Datafloq is the one-stop source for big data, blockchain and artificial intelligence. We offer information, insights and opportunities to drive innovation with emerging technologies.

  • Facebook
  • LinkedIn
  • RSS
  • Twitter

Recent

  • Microsoft Power BI -The Future of Healthcare’s Most Important Breakthrough
  • The Big Crunch of 2025: Is Your Data Safe from Quantum Computing?
  • From Data to Reality: Leveraging the Metaverse for Business Growth
  • How BlaBlaCar Built a Practical Data Mesh to Support Self-Service Analytics at Scale
  • How Blockchain Technology Can Enhance Fintech dApp Development

Search

Tags

AI Amazon analysis analytics app application Artificial Intelligence BI Big Data blockchain business China Cloud Companies company costs crypto Data development digital environment experience finance financial future Google+ government information machine learning market mobile Musk news public research security share skills social social media software startup strategy technology twitter

Copyright © 2023 Datafloq
HTML Sitemap| Privacy| Terms| Cookies

  • Facebook
  • Twitter
  • LinkedIn
  • WhatsApp

In order to optimize the website and to continuously improve Datafloq, we use cookies. For more information click here.

settings

Dear visitor,
Thank you for visiting Datafloq. If you find our content interesting, please subscribe to our weekly newsletter:

Did you know that you can publish job posts for free on Datafloq? You can start immediately and find the best candidates for free! Click here to get started.

Not Now Subscribe

Thanks for visiting Datafloq
If you enjoyed our content on emerging technologies, why not subscribe to our weekly newsletter to receive the latest news straight into your mailbox?

Subscribe

No thanks

Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

Necessary Cookies

Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.

If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.

Marketing cookies

This website uses Google Analytics to collect anonymous information such as the number of visitors to the site, and the most popular pages.

Keeping this cookie enabled helps us to improve our website.

Please enable Strictly Necessary Cookies first so that we can save your preferences!