• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
  • Articles
  • News
  • Events
  • Advertize
  • Jobs
  • Courses
  • Contact
  • (0)
  • LoginRegister
    • Facebook
    • LinkedIn
    • RSS
      Articles
      News
      Events
      Job Posts
    • Twitter
Datafloq

Datafloq

Data and Technology Insights

  • Categories
    • Big Data
    • Blockchain
    • Cloud
    • Internet Of Things
    • Metaverse
    • Robotics
    • Cybersecurity
    • Startups
    • Strategy
    • Technical
  • Big Data
  • Blockchain
  • Cloud
  • Metaverse
  • Internet Of Things
  • Robotics
  • Cybersecurity
  • Startups
  • Strategy
  • Technical

6 Signs Your Company Needs a New Data Strategy

Mike Davie / 4 min read.
May 23, 2017
Datafloq AI Score
×

Datafloq AI Score: 76.67

Datafloq enables anyone to contribute articles, but we value high-quality content. This means that we do not accept SEO link building content, spammy articles, clickbait, articles written by bots and especially not misinformation. Therefore, we have developed an AI, built using multiple built open-source and proprietary tools to instantly define whether an article is written by a human or a bot and determine the level of bias, objectivity, whether it is fact-based or not, sentiment and overall quality.

Articles published on Datafloq need to have a minimum AI score of 60% and we provide this graph to give more detailed information on how we rate this article. Please note that this is a work in progress and if you have any suggestions, feel free to contact us.

floq.to/sJ19i

Big Data is not the latest jargon that has crept into executive meetings, it’s becoming an essential business practice used by most organisations today. Over the years, businesses have become aware of the insights that they can gain from data analytics and are collecting increasing amounts of data. Yet, many businesses do not have a proper data strategy in place and are simply collecting data in a frenzy. There is a difference between Big Data and having lots of data. Collecting data just for the sake of it in hopes of using it in the future is not only bad business practice, it leads to potentially costly problems for your company.

Here is a list of issues that companies without a proper data strategy may face. If your company is experiencing any of these problems, it is a tell-tale sign that you need to review your company’s data strategy:

1. Storing data is starting to cost more

Even though the price of data storage has plummeted over the years, a poor data strategy will lead to high data storage costs. According to Experian, an information services company in the US, 77 percent of CIOs believe data is a valuable asset in their organisation that is not being fully exploited and 70 percent believe they have underutilised data in their business that is costing them money to store. With the price of cloud storage as low as $0.03 per gigabyte per month, many organisations may be tempted to store all the data that they can get their hands on. Initially, things may seem under control. But as your organisation acquires more data over the years, your database will soon to be filled with legacy data that has long past its usefulness along with redundant data that are merely duplicates of others. Backups of backups become increasingly expensive and the cost of maintaining your database threatens to make a considerable dent in your IT department’s budget.

2. Restructuring your database is nearly impossible

Data restructuring involves changing the way your data is logically or physically stored. There are many advantages why data restructuring should be performed. For instance, data restructuring is done to improve performance and storage utilization or to facilitate data processing. When you collect data from different sources, there comes a point in time when restructuring your database becomes necessary to align data collection with business objectives. The problem arises when you have so much data that database restructuring becomes nearly impossible to perform. With entire departments relying on both current and legacy data, database downtime bears too much of a risk for data restructuring to even be considered as an option. Being unable to make the difficult yet necessary decision, your data is trapped in limbo and is unable to be utilized effectively.

3. Data analytics is becoming harder to implement

In order to perform data analytics, you need a good understanding of the data that is available to you. This includes knowing what type of data you have collected, where your data comes from and how it is stored. For a small database, a comprehensive audit can be performed fairly easily. But when you are dealing with terabytes of data, this process can become complicated. Due to the large volume of data involved and depending on how your organisation is structured, obtaining a complete picture of your data assets might not be possible. Without this knowledge, data analytics becomes harder to implement which often leads to conflicts between IT departments and managers who expect results without fully understanding the capabilities and limitations of Big Data. 


Interested in what the future will bring? Download our 2023 Technology Trends eBook for free.

Consent

4. Insights become muddled

Data that is generated through business activities or research can be used to gain invaluable insights into consumer preferences. While it is tempting for companies to believe that gathering more data and crunching even more numbers will lead to better results, this is far from the truth. When it comes to data analytics, more data doesn’t mean better insights. In fact, the more data that is available, the higher the chances of using wrong or inappropriate datasets for analysis. Many organisations succumb to this base rate fallacy when they collect more data than necessary.

5. You experience analysis paralysis

Sampling your data is necessary to decrease the time and costs involved for data analysis. For a small dataset, sampling may be as easy as including all of the records in your database. The difficulty arises when you have large amounts of data at your disposal. With a large database, a multitude of sampling techniques become available to you. Many businesses find themselves spending a large amount of time weighing the advantages of each technique and second guessing their decision. As a result, management teams experience analysis paralysis, which stalls the discovery and implementation of insights.

6. You risk losing everything if your data is compromised

Businesses have long been a favourite target for hackers bent on pilfering private data for identity theft and exploitation. While breaches at big corporations such as Target and Yahoo make the headlines, small and medium enterprises are still very much targets for hackers. Smaller enterprises have digital assets that are equally valuable but have less security as compared to larger enterprises. Without a proper data strategy, you may risk losing more than just your data. If security measures are not in place, inadvertent data loss could be a highly likely result. If your organisation deals with sensitive or private information, your reputation and relationship with your customers could be on the line.  

Summary

Implementing a proper data strategy for your business is critical to prevent potential costly problems from arising. Failing to do so may lead to serious consequences that would negatively impact your business. If your business faces any of the problems above, consider reviewing your existing data strategy today.

Categories: Big Data, Strategy
Tags: big data startegy, costs, data usage, strategy

About Mike Davie

Mike Davie has been leading the commercialization of disruptive mobile technology and ICT infrastructure for a decade with leading global technology firms in Asia, Middle East and North America.

He parlayed his vision and knowledge of evolution of ICT into the creation of DataStreamX, the world's first online marketplace for real time data. DataStreamX's powerful platform enables data sellers to stream their data to global buyers across various industries in real time, multiplying their data revenue without having to invest in costly infrastructure and sales teams. DataStreamX's online platform provides a plethora of real time data to data hungry buyers at the click of their fingertips, enabling them to broaden and deepen their understanding of the industry they compete in, and to device effective strategies to out-manoeuvre their competitors.

Prior to founding DataStreamX, Mike was a member of the Advanced Mobile Product Strategy Division at Samsung where he developed go-to-market strategies for cutting edge technologies created in the Samsung R&D Labs. He also provided guidance to Asia and Middle East telcos on their 4G/LTE infrastructure data needs and worked closely with them to monetize their M2M and telco analytics data.

Mike has spoken at ICT and Big Data conferences including 4G World, LTE Asia, Infocomm Development of Singapore's IdeaLabs Sessions. Topics of his talks include Monetization of Data Assets, Data-as-a-Service, the Dichotomy of Real-time vs. Static Data.

To participate in the new Data Economy: www.datastreamx.com

Primary Sidebar

E-mail Newsletter

Sign up to receive email updates daily and to hear what's going on with us!

Publish
AN Article
Submit
a press release
List
AN Event
Create
A Job Post

Related Articles

12 Data Quality Metrics That ACTUALLY Matter

March 30, 2023 By Barr Moses

How to Validate OpenAI GPT Model Performance with Text Summarization (Part 1)

March 29, 2023 By mark

5 Best Data Engineering Projects & Ideas for Beginners

March 29, 2023 By emily.joe685

Related Jobs

  • Software Engineer | South Yorkshire, GB - February 07, 2023
  • Software Engineer with C# .net Investment House | London, GB - February 07, 2023
  • Senior Java Developer | London, GB - February 07, 2023
  • Software Engineer – Growing Digital Media Company | London, GB - February 07, 2023
  • LBG Returners – Senior Data Analyst | Chester Moor, GB - February 07, 2023
More Jobs

Tags

AI Amazon analysis analytics application applications Artificial Intelligence BI Big Data business China Cloud Companies company costs crypto Data design development digital engineer environment experience future Google+ government Group health information learning machine learning market mobile news public research security services share skills social social media software strategy technology

Related Events

  • 6th Middle East Banking AI & Analytics Summit 2023 | Riyadh, Saudi Arabia - May 10, 2023
  • Data Science Salon NYC: AI & Machine Learning in Finance & Technology | The Theater Center - December 7, 2022
  • Big Data LDN 2023 | Olympia London - September 20, 2023
More events

Related Online Courses

  • Webinar: Large Language Models – Balancing Opportunities & Challenges
  • Digital Transformation EXPO (DTX) Manchester
  • Making Data Science Work for Clinical Reporting
More courses

Footer


Datafloq is the one-stop source for big data, blockchain and artificial intelligence. We offer information, insights and opportunities to drive innovation with emerging technologies.

  • Facebook
  • LinkedIn
  • RSS
  • Twitter

Recent

  • 12 Data Quality Metrics That ACTUALLY Matter
  • How to Build Microservices with Node.js
  • How to Validate OpenAI GPT Model Performance with Text Summarization (Part 1)
  • What is Enterprise Application Integration (EAI), and How Should Your Company Approach It?
  • 5 Best Data Engineering Projects & Ideas for Beginners

Search

Tags

AI Amazon analysis analytics application applications Artificial Intelligence BI Big Data business China Cloud Companies company costs crypto Data design development digital engineer environment experience future Google+ government Group health information learning machine learning market mobile news public research security services share skills social social media software strategy technology

Copyright © 2023 Datafloq
HTML Sitemap| Privacy| Terms| Cookies

  • Facebook
  • Twitter
  • LinkedIn
  • WhatsApp

In order to optimize the website and to continuously improve Datafloq, we use cookies. For more information click here.

settings

Dear visitor,
Thank you for visiting Datafloq. If you find our content interesting, please subscribe to our weekly newsletter:

Did you know that you can publish job posts for free on Datafloq? You can start immediately and find the best candidates for free! Click here to get started.

Not Now Subscribe

Thanks for visiting Datafloq
If you enjoyed our content on emerging technologies, why not subscribe to our weekly newsletter to receive the latest news straight into your mailbox?

Subscribe

No thanks

Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

Necessary Cookies

Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.

If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.

Marketing cookies

This website uses Google Analytics to collect anonymous information such as the number of visitors to the site, and the most popular pages.

Keeping this cookie enabled helps us to improve our website.

Please enable Strictly Necessary Cookies first so that we can save your preferences!