• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
  • Articles
  • News
  • Events
  • Advertize
  • Jobs
  • Courses
  • Contact
  • (0)
  • LoginRegister
    • Facebook
    • LinkedIn
    • RSS
      Articles
      News
      Events
      Job Posts
    • Twitter
Datafloq

Datafloq

Data and Technology Insights

  • Categories
    • Big Data
    • Blockchain
    • Cloud
    • Internet Of Things
    • Metaverse
    • Robotics
    • Cybersecurity
    • Startups
    • Strategy
    • Technical
  • Big Data
  • Blockchain
  • Cloud
  • Metaverse
  • Internet Of Things
  • Robotics
  • Cybersecurity
  • Startups
  • Strategy
  • Technical

Three Reasons Why Now Is The Time For Artificial Intelligence

Bill Franks / 4 min read.
March 20, 2018
Datafloq AI Score
×

Datafloq AI Score: 85

Datafloq enables anyone to contribute articles, but we value high-quality content. This means that we do not accept SEO link building content, spammy articles, clickbait, articles written by bots and especially not misinformation. Therefore, we have developed an AI, built using multiple built open-source and proprietary tools to instantly define whether an article is written by a human or a bot and determine the level of bias, objectivity, whether it is fact-based or not, sentiment and overall quality.

Articles published on Datafloq need to have a minimum AI score of 60% and we provide this graph to give more detailed information on how we rate this article. Please note that this is a work in progress and if you have any suggestions, feel free to contact us.

floq.to/4kPRR

Within a two- to three-year span, Artificial Intelligence (AI) has gone from relative obscurity to an extreme level of industry attention and media coverage. As a result, organizations that barely knew how to spell Artificial Intelligence a few years ago are now charging full steam ahead to pursue AI initiatives. A common question that is raised is, Why is now the time for AI? After all, there have been bursts of hype around AI multiple times over the last few decades. Is today different? And, if so, why?

There are three fundamental trends that result in now truly is the time for AI. In the past, none of these trends had advanced far enough to make AI widely feasible and cost-effective. An upcoming IIA research brief will dive more deeply into the overall marketplace hype around AI, as well as the three trends outlined in this blog.

Trend 1: Cheap and Accessible Computing Power

It is important to understand that this trend is not just that the level of computing power available has risen exponentially, but also that the cost of computing power is simultaneously decreasing. As a result, not only is the power of the computing that is available today massively higher than it was in the past, but the cost has come down just as fast. In the past when AI was hyped, the cost structure didn’t work for large-scale adoption and impact.

We have reached a critical point where the availability of computing power – and its cost – are both now in the range that makes AI a completely feasible activity for most businesses. Just a few years ago, even if the computing power was theoretically available, the cost would have made most efforts impractical. At a recent industry trade show, it was suggested that what took months to process just ten years ago was down to just hours five years ago and is now down under one minute! And, that minute of processing is affordable. These facts are perhaps the biggest reason that AI is real today and is growing so broadly in terms of both adoption and usage.

Trend 2: Improved Ai Algorithms and Availability

There’s been an immense amount of research and evolution of the underlying algorithms behind AI. A wide variety of different AI algorithm variations are now available that can be utilized for many purposes. These algorithms have not only been continuously updated and enhanced in recent times, but they also are getting packaged up and made available to people to more easily make use of them.


Interested in what the future will bring? Download our 2023 Technology Trends eBook for free.

Consent

A few years ago, a gentleman I know in Atlanta was exploring deep learning well before it was common. In fact, he is the person who introduced me to deep learning and the potential it held. When he was describing what he had to go through to actually make AI work at the time, it was incredibly painful and highly technical. He stated that at the time there were very few people that could actually make AI work outside of a research or academic environment. Companies in Silicon Valley were paying exorbitant sums of money to anyone who could make the AI algorithms work for a practical problem.

Today, simple cloud-based interfaces are available that enable standard AI tasks, such as image recognition, to be executed with far less effort and technical expertise than in the past. This is a huge enabler. The reason why traditional analytic methods were able to spread was in part the ability for analysts to call procedures that could be trusted to handle the basic math under the hood. The focus could, therefore, be on finding the right business problems. This is where we finally are with AI today.

Trend 3: Data Availability for AI Processes

The type of data that is often used for AI isn’t the type of data that was traditionally captured and made available for analysis by organizations. Data types such as images, text, and video simply weren’t a priority. In the rare historical cases where such data was required, special systems and handling were needed. The idea of doing any sort of analytics against such non-traditional data, AI or otherwise, just wasn’t on the radar. Today, systems can store and analyze a wide array of data from text, to images, to traditional data within a single environment. This has also enabled AI to break through so strongly. In this sense, AI is really building off of the big data trend. Without the changes that big data helped bring about, AI wouldn’t be in a position to be a real factor today either. As organizations greatly expanded the types and depth of data that they captured, the data required for many AI processes came right along with it.

Conclusion

In the past AI hype cycles, AI was theoretically real, but not real from a practical perspective. Today’s processing power, data availability, and improved AI algorithms come together to make AI truly possible and feasible today within a business environment. That doesn’t mean that every problem will be solved with AI, regardless of the hype. But it does mean that in cases where AI is the right approach, there are far fewer barriers to success than in the past.

Originally published by the International Institute for Analytics

Categories: Artificial Intelligence
Tags: algorithms, Artificial Intelligence, Data

About Bill Franks

Bill Franks is an internationally recognized chief analytics officer who is a thought leader, speaker, consultant, and author focused on analytics and data science. Franks is also the author of Winning The Room, 97 Things About Ethics Everyone In Data Science Should Know, Taming The Big Data Tidal Wave, and The Analytics Revolution. His work has spanned clients in a variety of industries for companies ranging in size from Fortune 100 companies to small non-profit organizations. You can learn more at https://www.bill-franks.com.

Primary Sidebar

E-mail Newsletter

Sign up to receive email updates daily and to hear what's going on with us!

Publish
AN Article
Submit
a press release
List
AN Event
Create
A Job Post

Related Articles

How Data Analytics is Revolutionizing Talent Acquisition Leadership

March 20, 2023 By Monika Sangwan

Storing the World in a Sugar Cube: The DNA Data Revolution Unfolds

March 20, 2023 By Dr Mark van Rijmenam

Optimizing Traditional Agricultural Practices with AI

March 20, 2023 By Roger Brown

Related Jobs

  • Software Engineer | South Yorkshire, GB - February 07, 2023
  • Software Engineer with C# .net Investment House | London, GB - February 07, 2023
  • Senior Java Developer | London, GB - February 07, 2023
  • Software Engineer – Growing Digital Media Company | London, GB - February 07, 2023
  • LBG Returners – Senior Data Analyst | Chester Moor, GB - February 07, 2023
More Jobs

Tags

AI Amazon analysis analytics application applications Artificial Intelligence benefits BI Big Data business China Cloud Companies company costs crypto Data design development digital engineer environment experience future government Group health information learning machine learning mobile news public research security services share skills social social media software solutions strategy technology

Related Events

  • 6th Middle East Banking AI & Analytics Summit 2023 | Riyadh, Saudi Arabia - May 10, 2023
  • Data Science Salon NYC: AI & Machine Learning in Finance & Technology | The Theater Center - December 7, 2022
  • Big Data LDN 2023 | Olympia London - September 20, 2023
More events

Related Online Courses

  • Sneak Peek: Dartmouth’s Digital Transformation Certificate
  • Advancing Construction Analytics 2023
  • Strategies for Senior Housing Communities during COVID-19
More courses

Footer


Datafloq is the one-stop source for big data, blockchain and artificial intelligence. We offer information, insights and opportunities to drive innovation with emerging technologies.

  • Facebook
  • LinkedIn
  • RSS
  • Twitter

Recent

  • How data and modern machine learning can help TSA keep us safe
  • Exploring the Legal Implications of Generative AI: Is it Fair Use?
  • How Data Analytics is Revolutionizing Talent Acquisition Leadership
  • Storing the World in a Sugar Cube: The DNA Data Revolution Unfolds
  • Optimizing Traditional Agricultural Practices with AI

Search

Tags

AI Amazon analysis analytics application applications Artificial Intelligence benefits BI Big Data business China Cloud Companies company costs crypto Data design development digital engineer environment experience future government Group health information learning machine learning mobile news public research security services share skills social social media software solutions strategy technology

Copyright © 2023 Datafloq
HTML Sitemap| Privacy| Terms| Cookies

  • Facebook
  • Twitter
  • LinkedIn
  • WhatsApp

In order to optimize the website and to continuously improve Datafloq, we use cookies. For more information click here.

settings

Dear visitor,
Thank you for visiting Datafloq. If you find our content interesting, please subscribe to our weekly newsletter:

Did you know that you can publish job posts for free on Datafloq? You can start immediately and find the best candidates for free! Click here to get started.

Not Now Subscribe

Thanks for visiting Datafloq
If you enjoyed our content on emerging technologies, why not subscribe to our weekly newsletter to receive the latest news straight into your mailbox?

Subscribe

No thanks

Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

Necessary Cookies

Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.

If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.

Marketing cookies

This website uses Google Analytics to collect anonymous information such as the number of visitors to the site, and the most popular pages.

Keeping this cookie enabled helps us to improve our website.

Please enable Strictly Necessary Cookies first so that we can save your preferences!