• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
  • Articles
  • News
  • Events
  • Advertize
  • Jobs
  • Courses
  • Contact
  • (0)
  • LoginRegister
    • Facebook
    • LinkedIn
    • RSS
      Articles
      News
      Events
      Job Posts
    • Twitter
Datafloq

Datafloq

Data and Technology Insights

  • Categories
    • Big Data
    • Blockchain
    • Cloud
    • Internet Of Things
    • Metaverse
    • Robotics
    • Cybersecurity
    • Startups
    • Strategy
    • Technical
  • Big Data
  • Blockchain
  • Cloud
  • Metaverse
  • Internet Of Things
  • Robotics
  • Cybersecurity
  • Startups
  • Strategy
  • Technical

Machine Learning: Powering the Next Wave of SaaS Solutions

Rohit Yadav / 4 min read.
January 11, 2017
Datafloq AI Score
×

Datafloq AI Score: 84.67

Datafloq enables anyone to contribute articles, but we value high-quality content. This means that we do not accept SEO link building content, spammy articles, clickbait, articles written by bots and especially not misinformation. Therefore, we have developed an AI, built using multiple built open-source and proprietary tools to instantly define whether an article is written by a human or a bot and determine the level of bias, objectivity, whether it is fact-based or not, sentiment and overall quality.

Articles published on Datafloq need to have a minimum AI score of 60% and we provide this graph to give more detailed information on how we rate this article. Please note that this is a work in progress and if you have any suggestions, feel free to contact us.

floq.to/RDRgu

1950 marked a watershed year for Artificial Intelligence (AI) as Alan Turing, the father of modern computer science, developed the Turing Test while at the University of Manchester. In his seminal paper, Computing Machinery and Intelligence, Turing considers the question, Can machines think? Simply put, the Turing Test is a criterion to determine whether a computer has human-like intelligence. Six and a half decades later enterprise software is about to undergo radical transformation a substantial change that will make the shift to software as a service (SaaS) look inevitable. Unsurprisingly, this transformation is being powered by machine learning.

With machine learning, computers can process and mine data in real time to automatically discover insights and generate predictive models. Companies can find patterns and foresee what will happen in the future based on real-time analysis of their data. The possibilities fuelled by machine learning are endless. SaaS solutions are typically exposed to enormous amounts of data that reside in the Internet ecosystem, much of which is widely available for all manner of analytics. As such, several categories of SaaS solutions are potential candidates to apply both machine learning and cognitive applications to leverage the sea of data available via the internet.

Machine learning applications are all around us. For entrepreneurs and investors, this is an exciting time to innovate and place new bets in the enterprise software market. Below are some of the SaaS solutions where machine learning is playing a strategic role.

Product Search

When the user searches for a product, how do we find the best results for the user? One factor used in product ranking is user click-through rates or product sell-through rates. In addition, user behavioural data gives the link from a query, to a product page view, all the way to the purchase event. Through large-scale data analysis of query logs, we can create graphs between queries and products, and between different products.

We can also mine data to understand user query intent. When a user searches for Toyota Prius, are they searching for a new car, or just repair parts of the car? Query intent detection comes from understanding the user, other users searches, and the semantics of query terms.

Documentation Search

SaaS based company ContractWorks has innovated in the field of document search for enterprises.  By providing a central repository for securely storing all sorts of contractual data and, using advanced tag-based search engine algorithms to retrieve data, they have made contract management, once a complex and, tedious task, into a simple one click solution. In the past, Google and Microsoft have pioneered Hadoop map reduce application with their search algorithms.

Product Recommendation and Promotions

Typical recommendation systems are built upon the principle of collaborative filtering, where the aggregated choices of similar, past users can be used to provide insights for the current user. Predictive analytics makes this challenge easier by using machine learning to understand a consumers behaviour, including the purchase history of that consumer and the performance of different products on the site to determine relevant recommendations that have a higher probability of generating a sale. Collaborative filtering has the same functionality with promotions, and is able to identify what has worked in the past, and then offer the best promotions in real-time based on the consumers browsing patterns.


Interested in what the future will bring? Download our 2023 Technology Trends eBook for free.

Consent

Anticipatory Purchases

The popular audio-recognition app Shazam now has an always-on feature that listens for audio all day long, tags songs that dont exist in your library, and makes them available for your perusal. This saves you the hassle of unlocking your phone, loading the app and nearly causing an accident in your car.

With machine learning, Shazam and products like it could intelligently filter your auto-tags to what youd most likely be interested in based on your existing library. It can also use deep neural networks to be able to decide what songs to add to your library, even making a purchase on your behalf.  Big Data has also led to the success of similar music streaming companies like Spotify, Songza, MusicMetric, and Rhythm. Without it, these companies wouldnt exist. Spotify produces an estimated 1.5 terabytes of compressed data daily. It also has one of the largest Hadoop clusters in Europe, with close to 700 heterogeneous nodes running approximately 7,000 jobs per day.

Amazon recently filed a patent for anticipatory shipping, which ships and order before its even placed. Amazons wealth of order history, search, wish list and click stream data may one day be leveraged this way.

Big Opportunity Ahead

Machine learning adoption is accelerating in enterprise. For entrepreneurs and investors, this is an exciting time to innovate and place new bets in enterprise software. BCC Research predicts the machine learning market will reach $15.3 billion by 2019, with an average annual growth rate of 19.7 percent. One of the early growth categories is predictive analytics software, which according to Transparency Market Research is expected to reach $6.5 billion worldwide in 2019, up from $2 billion in 2012,

These are exciting times for machine learning adoption in enterprise. While 1950 was the dawn of machine learning and AI, 2017 will be a watershed moment for the application of machine learning to enterprise sales, marketing and related business processes. As we look forward, machine learning will be the defining characteristic that distinguishes legacy from modern enterprise applications.

What’s your take? Chime in with your thoughts below.

Categories: Artificial Intelligence
Tags: analytics software, Big Data, enterprise cloud, machine learning, organisations

About Rohit Yadav

Rohit Yadav is a customer experience evangelist helping companies identify and make the best use of their key performance indicators and generate insights to improve their customer experience. Rohit is a regular writer on Big Data technology, analytics and customer centricity for various leading forums like bicorner.com, Analytics India Magazine, KDnuggets, Data Science Central, CX Journey, MyCustomer.com and CustomerThink.com. Connect with Rohit @roityadav

Primary Sidebar

E-mail Newsletter

Sign up to receive email updates daily and to hear what's going on with us!

Publish
AN Article
Submit
a press release
List
AN Event
Create
A Job Post

Related Articles

Top 6 Cybersecurity Certification Programs in 2023

March 22, 2023 By Lucia Adams

Exploring the Legal Implications of Generative AI: Is it Fair Use?

March 20, 2023 By Bill Franks

Visual AI: The Shiny Technological Object That Glitters Like Gold

March 17, 2023 By sgold

Related Jobs

  • Software Engineer | South Yorkshire, GB - February 07, 2023
  • Software Engineer with C# .net Investment House | London, GB - February 07, 2023
  • Senior Java Developer | London, GB - February 07, 2023
  • Software Engineer – Growing Digital Media Company | London, GB - February 07, 2023
  • LBG Returners – Senior Data Analyst | Chester Moor, GB - February 07, 2023
More Jobs

Tags

AI Amazon analysis analytics application applications Artificial Intelligence BI Big Data business China Cloud Companies company costs crypto Data design development digital engineer environment experience finance financial future Google+ government Group health information machine learning mobile news public research security services share skills social social media software strategy technology

Related Events

  • 6th Middle East Banking AI & Analytics Summit 2023 | Riyadh, Saudi Arabia - May 10, 2023
  • Data Science Salon NYC: AI & Machine Learning in Finance & Technology | The Theater Center - December 7, 2022
  • Big Data LDN 2023 | Olympia London - September 20, 2023
More events

Related Online Courses

  • Google Chrome Security and Extensions for Beginners
  • Pre-MBA Statistics
  • Relational Databases for Beginners
More courses

Footer


Datafloq is the one-stop source for big data, blockchain and artificial intelligence. We offer information, insights and opportunities to drive innovation with emerging technologies.

  • Facebook
  • LinkedIn
  • RSS
  • Twitter

Recent

  • How BlaBlaCar Built a Practical Data Mesh to Support Self-Service Analytics at Scale
  • How Blockchain Technology Can Enhance Fintech dApp Development
  • How to leverage novel technology to achieve compliance in pharma
  • The need for extensive data to make decisions more effectively and quickly
  • How Is Robotic Micro Fulfillment Changing Distribution?

Search

Tags

AI Amazon analysis analytics application applications Artificial Intelligence BI Big Data business China Cloud Companies company costs crypto Data design development digital engineer environment experience finance financial future Google+ government Group health information machine learning mobile news public research security services share skills social social media software strategy technology

Copyright © 2023 Datafloq
HTML Sitemap| Privacy| Terms| Cookies

  • Facebook
  • Twitter
  • LinkedIn
  • WhatsApp

In order to optimize the website and to continuously improve Datafloq, we use cookies. For more information click here.

settings

Dear visitor,
Thank you for visiting Datafloq. If you find our content interesting, please subscribe to our weekly newsletter:

Did you know that you can publish job posts for free on Datafloq? You can start immediately and find the best candidates for free! Click here to get started.

Not Now Subscribe

Thanks for visiting Datafloq
If you enjoyed our content on emerging technologies, why not subscribe to our weekly newsletter to receive the latest news straight into your mailbox?

Subscribe

No thanks

Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

Necessary Cookies

Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.

If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.

Marketing cookies

This website uses Google Analytics to collect anonymous information such as the number of visitors to the site, and the most popular pages.

Keeping this cookie enabled helps us to improve our website.

Please enable Strictly Necessary Cookies first so that we can save your preferences!