• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
  • Articles
  • News
  • Events
  • Advertize
  • Jobs
  • Courses
  • Contact
  • (0)
  • LoginRegister
    • Facebook
    • LinkedIn
    • RSS
      Articles
      News
      Events
      Job Posts
    • Twitter
Datafloq

Datafloq

Data and Technology Insights

  • Categories
    • Big Data
    • Blockchain
    • Cloud
    • Internet Of Things
    • Metaverse
    • Robotics
    • Cybersecurity
    • Startups
    • Strategy
    • Technical
  • Big Data
  • Blockchain
  • Cloud
  • Metaverse
  • Internet Of Things
  • Robotics
  • Cybersecurity
  • Startups
  • Strategy
  • Technical

How Machine Learning is Revolutionizing Digital Enterprises

Ronald van Loon / 6 min read.
April 13, 2017
Datafloq AI Score
×

Datafloq AI Score: 65.33

Datafloq enables anyone to contribute articles, but we value high-quality content. This means that we do not accept SEO link building content, spammy articles, clickbait, articles written by bots and especially not misinformation. Therefore, we have developed an AI, built using multiple built open-source and proprietary tools to instantly define whether an article is written by a human or a bot and determine the level of bias, objectivity, whether it is fact-based or not, sentiment and overall quality.

Articles published on Datafloq need to have a minimum AI score of 60% and we provide this graph to give more detailed information on how we rate this article. Please note that this is a work in progress and if you have any suggestions, feel free to contact us.

floq.to/MD7KG

According to the prediction of IDC Futurescapes, Two-thirds of Global 2000 Enterprises CEOs will center their corporate strategy on digital transformation. A major part of the strategy should include machine-learning (ML) solutions. The implementation of these solutions could change how these enterprises view customer value and internal operating model today.

If you want to stay ahead of the game, then you cannot afford to wait for that to happen. Your digital business needs to move towards automation now while ML technology is developing rapidly. Machine learning algorithms learn from huge amounts of structured and unstructured data, e.g. text, images, video, voice, body language, and facial expressions. By that it opens a new dimension for machines with limitless applications from healthcare systems to video games and self-driving cars. 

In short, ML will connect intelligently people, business and things. It will enable completely new interaction scenarios between customers and companies and eventually allow a true intelligent enterprise. To realize the applications that are possible due to ML fully, we need to build a modern business environment. However, this will only be achieved, if businesses can understand the distinction between Artificial Intelligence (AI) and Machine Learning (ML). 

Understanding the Distinction Between ML and AI

Machines that could fully replicate or even surpass all humans’ cognitive functions are still a dream of Science Fiction stories, Machine Learning is the reality behind AI and it is available today. ML mimics how the human cognitive system functions and solves problems based on that functioning. It can analyze data that is beyond human capabilities. The ML data analysis is based on the patterns it can identity in Big Data. It can make UX immersive and efficient while also being able to respond with human-like emotions. By learning from data instead of being programmed explicitly, computers can now deal with challenges previously reserved to the human. They now beat us at games like chess, go and poker; they can recognize images more accurately, transcribe spoken words more precisely, and are capable of translating over a hundred languages. 

ML Technology and Applications for Life and Business

In order for us to comprehend the range of applications that will be possible due to ML technology, let us look at some examples available currently: 

  • Amazon Echo, Google Home: 
  • Digital assistants: Apple’s Siri, SAP’s upcoming Copilot

Both types of devices provide an interactive experience for the users due to Natural Language Processing technology. With ML in the picture, this experience might be taken to new heights, i.e., chatbots. Initially, they will be a part of the apps mentioned above but it is predicted that they could make text and GUI interfaces obsolete! 

ML technology does not force the user to learn how it can be operated but adapts itself to the user. It will become much more than give birth to a new interface; it will lead to the formation of enterprise AI.

The limitless ways in which ML can be applied include provision of completely customized healthcare. It will be able to anticipate the customer’s needs due to their shopping history. It can make it possible for the HR to recruit the right candidate for each job without bias and automate payments in the finance sector. 

Unprecedented Business Benefits via ML

Business processes will become automated and evolve with the increasing use of ML due to the benefits associated with it. Customers can use the technology to pick the best results and thus, reach decisions faster. As the business environment changes, so will the advanced machines as they constantly update and adapt themselves. ML will also help businesses arrive on innovations and keep growing by providing the right kind of business products/services and basing their decisions on a business model with the best outcome. 

ML technology is able to develop insights that are beyond human capabilities based on the patterns it derives from Big Data. As a result, businesses would be able to act at the right time and take advantage of sales opportunities, converting them into closed deals. With the whole operation optimized and automated, the rate at which a business grows will accelerate. Moreover, the business process will achieve more at a lesser cost. ML will lead businesses into environs with minimal human error and stronger cybersecurity. 


Interested in what the future will bring? Download our 2023 Technology Trends eBook for free.

Consent

ML Use Cases

The following three examples show how ML can be applied to an enterprise model that utilizes Natural Language Processing:

  • Support Ticket Classification

Consider the case where tickets from different media channels (email, social websites etc.) needs to be forwarded to the right specialist for the topic. The immense volume of support tickets makes the task lengthy and time consuming. If ML were to be applied to this situation, it could be useful in classifying them into different categories. 

API and micro-service integration could mean that the ticket could be automatically categorized. If the number of correctly categorized tickets is high enough, a ML algorithm can route the ticket directly to the next service agent without the need of a support agent. 

  •  Recruiting

The job of prioritizing incoming applications for positions with hundreds of applicants can also be slow and time consuming. If automated via ML, the HR can let the machine predict candidate suitability by providing it with a job description and the candidate’s CV. A definite pattern would be visible in the CVs of suitable candidates, such as the right length, experience, absence of typos, etc. Automation of the process will be more likely to provide the right candidate for the job. 

  • Marketing 

ML will help build logo and brand recognition for businesses in the following two ways:

  1. With the use of a brand intelligence app, the identification of logos in event sponsorship videos or TV can lead to marketing ROI calculations.
  2. Stay up to date on the customer’s transactions and use that behavior to predict how to maintain customer loyalty and find the best way to retain them.

How Enterprises Can Get Started Implementing Machine Learning

Businesses can step into the new age of ML and begin implementing the technique by letting the machines use Big Data derived from various sources, e.g. images, documents, IoT devices etc to learn. While these machines can automate lengthy and repetitive tasks, they can also be used to predict the outcome for new data. The first step in implementation of ML for a business should be to educate themselves about its nature and the range of its applications. A free openSAP course can help make that possible. 

Another step that can bring a business closer to ML implementation is data preparation in complex landscapes. The era of information silos is over and there is an imperative need for businesses to gather data from various sources, such as customers, partners, and suppliers. The algorithms must then be provided open access to that data so they can learn and evolve. The Chief Data Officer of the company can oversee the ML integration process.

To start with completely new use cases for Machine Learning is not easy and requires a good understanding of the subject and having the right level of expertise in the company. A better starting point for many companies would be to rely on ML solutions already integrated into standard software. By that it will connect seamless with the existing business process and immediately start to create value.

Lastly, businesses should start gathering the components necessary for building AI products. Among the requirements would be a cloud platform capable of handling high data volume that is derived from multiple sources. The relevant people are as important to this step as are the technology and processes. After all, they would be the ones who will be testing the latest digital and ML technologies.

Categories: Artificial Intelligence, Big Data
Tags: AI, Artificial Intelligence, benefits, machine learning, use cases

About Ronald van Loon

Helping data driven companies generating business value with best of breed solutions and a hands-on approach.

Ronald has been recognized as one of the TOP 10 GLOBAL PREDICTIVE ANALYTICS INFLUENCERS by DataConomy!

Want to stay up to date with latest Awesome Big Data case stories, insights & tips?
Join the LinkedIn Group 'Awesome Ways Big Data Is Used To Improve Our World
Join Free Big Data Webinars

Examples how we help companies:

' Improve Customer Experience: provide quantifiable insights in the online & offline Customer Journey and customer profiles and take action on your visitor in real time.
' Decrease IT cost & centralize web data: stream web data to your Data Warehouse
' Increase campaign Return On Investment: provide insights into cross channel campaign conversion attribution
' Reduce your churn: predict the next customer you will lose so actions can be taken to make it a satisfied customer again
' Increase up-sell: predict buyer intent and online generate product recommendation
' Improve your marketing, sales and service processes & reduce cost: provide insights in the Customer Journey to improve your business processes
' Prevent damage on decisions on wrong data: secure analytics data quality by monitoring 100% of your data
' Manage your brand reputation: manage customer consent & store your data safely

Read more publications of case stories to get inspired what Big Data can do for you
'360 degree customer view and its web data collection struggle https://linkd.in/1B4Paer
'Who will be your next customer? https://ow.ly/GXs78
'More stories: https://linkd.in/1uWHbuP

Interested in one of our 100 success stories from top European retail, telco, finance, travel, media & entertainment, manufacturing, energy or service companies?

Please feel free to connect with me on LinkedIn (LION)
' ronald.vanloon@adversitement.com
Linkedin Group
Twitter @Ronald_vanLoon
' +31 (0) 20 7600 700

Primary Sidebar

E-mail Newsletter

Sign up to receive email updates daily and to hear what's going on with us!

Publish
AN Article
Submit
a press release
List
AN Event
Create
A Job Post

Related Articles

IMPACT: Operational & Business Transformation Summit

March 23, 2023 By carmen.cimino

IoT protocol and commnication standards

March 22, 2023 By Patrick R

Why We Need AI for Air Quality

March 21, 2023 By Jane Marsh

Related Jobs

  • Software Engineer | South Yorkshire, GB - February 07, 2023
  • Software Engineer with C# .net Investment House | London, GB - February 07, 2023
  • Senior Java Developer | London, GB - February 07, 2023
  • Software Engineer – Growing Digital Media Company | London, GB - February 07, 2023
  • LBG Returners – Senior Data Analyst | Chester Moor, GB - February 07, 2023
More Jobs

Tags

AI Amazon analysis analytics application applications Artificial Intelligence benefits BI Big Data business China Cloud Companies company costs crypto Data design development digital engineer environment experience finance financial future government Group health information machine learning mobile news public research security services share skills social social media software strategy technology

Related Events

  • 6th Middle East Banking AI & Analytics Summit 2023 | Riyadh, Saudi Arabia - May 10, 2023
  • Data Science Salon NYC: AI & Machine Learning in Finance & Technology | The Theater Center - December 7, 2022
  • Big Data LDN 2023 | Olympia London - September 20, 2023
More events

Related Online Courses

  • IMPACT: Operational & Business Transformation Summit
  • American History Through Baseball
  • Velocity Data and Analytics Summit, UAE
More courses

Footer


Datafloq is the one-stop source for big data, blockchain and artificial intelligence. We offer information, insights and opportunities to drive innovation with emerging technologies.

  • Facebook
  • LinkedIn
  • RSS
  • Twitter

Recent

  • How BlaBlaCar Built a Practical Data Mesh to Support Self-Service Analytics at Scale
  • How Blockchain Technology Can Enhance Fintech dApp Development
  • How to leverage novel technology to achieve compliance in pharma
  • The need for extensive data to make decisions more effectively and quickly
  • How Is Robotic Micro Fulfillment Changing Distribution?

Search

Tags

AI Amazon analysis analytics application applications Artificial Intelligence benefits BI Big Data business China Cloud Companies company costs crypto Data design development digital engineer environment experience finance financial future government Group health information machine learning mobile news public research security services share skills social social media software strategy technology

Copyright © 2023 Datafloq
HTML Sitemap| Privacy| Terms| Cookies

  • Facebook
  • Twitter
  • LinkedIn
  • WhatsApp

In order to optimize the website and to continuously improve Datafloq, we use cookies. For more information click here.

settings

Dear visitor,
Thank you for visiting Datafloq. If you find our content interesting, please subscribe to our weekly newsletter:

Did you know that you can publish job posts for free on Datafloq? You can start immediately and find the best candidates for free! Click here to get started.

Not Now Subscribe

Thanks for visiting Datafloq
If you enjoyed our content on emerging technologies, why not subscribe to our weekly newsletter to receive the latest news straight into your mailbox?

Subscribe

No thanks

Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

Necessary Cookies

Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.

If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.

Marketing cookies

This website uses Google Analytics to collect anonymous information such as the number of visitors to the site, and the most popular pages.

Keeping this cookie enabled helps us to improve our website.

Please enable Strictly Necessary Cookies first so that we can save your preferences!