• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
  • Articles
  • News
  • Events
  • Advertize
  • Jobs
  • Courses
  • Contact
  • (0)
  • LoginRegister
    • Facebook
    • LinkedIn
    • RSS
      Articles
      News
      Events
      Job Posts
    • Twitter
Datafloq

Datafloq

Data and Technology Insights

  • Categories
    • Big Data
    • Blockchain
    • Cloud
    • Internet Of Things
    • Metaverse
    • Robotics
    • Cybersecurity
    • Startups
    • Strategy
    • Technical
  • Big Data
  • Blockchain
  • Cloud
  • Metaverse
  • Internet Of Things
  • Robotics
  • Cybersecurity
  • Startups
  • Strategy
  • Technical

Fog Computing is Vital for a Successful Internet of Things

Ahmed Banafa / 6 min read.
June 10, 2015
Datafloq AI Score
×

Datafloq AI Score: 80.67

Datafloq enables anyone to contribute articles, but we value high-quality content. This means that we do not accept SEO link building content, spammy articles, clickbait, articles written by bots and especially not misinformation. Therefore, we have developed an AI, built using multiple built open-source and proprietary tools to instantly define whether an article is written by a human or a bot and determine the level of bias, objectivity, whether it is fact-based or not, sentiment and overall quality.

Articles published on Datafloq need to have a minimum AI score of 60% and we provide this graph to give more detailed information on how we rate this article. Please note that this is a work in progress and if you have any suggestions, feel free to contact us.

floq.to/2mff1

The Internet of Things (IoT) represents a remarkable transformation of the way in which our world will soon interact. Much like the World Wide Web connected computers to networks, and the next evolution connected people to the Internet and other people, the IoT looks poised to interconnect devices, people, environments, virtual objects and machines in ways that only science fiction writers could have imagined.

Different Services IoT

In a nutshell the Internet of Things (IoT) is the convergence of connecting people, things, data and processes is transforming our life, business and everything in between.

There are some big numbers attached to this trend. Cisco optimistically predicted a $19 trillion profit market for IoT, and projects there will be 50 billion smart objects connected to the Internet by 2020. Clearly, those are motivating reasons for companies to put their label on this coming IT tsunami.
Growth Internet of Things

The term fog computing is also referred to as edge computing, which essentially means that rather than hosting and working from a centralized cloud, fog systems operate on network ends. That concentration means that data can be processed locally in smart devices rather than being sent to the cloud for processing. Its one approach to dealing with the Internet of Things (IoT).

Fog computing, like many IT developments, grew out of the need to address a couple of growing concerns: being able to act in real time to incoming data and working within the limits of available bandwidth. Todays sensors are generating 2 exabytes of data. Its too much data to send to the cloud. Theres not enough bandwidth, and it costs too much money. Fog computing places some of transactions and resources at the edge of the cloud, rather than establishing channels for cloud storage and utilization, it reduces the need for bandwidth by not sending every bit of information over cloud channels, and instead aggregating it at certain access points. By using this kind of distributed strategy, we can lower costs and improve efficiencies.

IoT World Forum Reference Model

Fog Computing extends the cloud computing paradigm to the edge of the network to address applications and services that do not fit the paradigm of the cloud including:

  • Applications that require very low and predictable latency
  • Geographically distributed applications
  • Fast mobile applications
  • Large-scale distributed control systems (smart grid, connected rail, smart traffic light systems).

Defining characteristics of the Fog are: low latency and location awareness; wide-spread geographical distribution; mobility; very large number of nodes, predominant role of wireless access, strong presence of streaming and real time applications, heterogeneity.

The above characteristics make the Fog the appropriate platform for a number of critical Internet of Things (IoT) services and applications, namely, Connected Vehicle, Smart Grid, Smart Cities, and, in general, Wireless Sensors and Actuators Networks (WSANs).


Interested in what the future will bring? Download our 2023 Technology Trends eBook for free.

Consent

Fog Computing

Another way to look at Fog computing is to consider it a virtualized platform that is typically located between end user devices and the cloud data centers hosted within the Internet. Thus fog computing can provide better quality of service in terms of delay, power consumption, reduced data traffic over the Internet etc. The main feature of fog computing is its ability to support applications that require low latency, location awareness and mobility. This ability is made possible by the fact that the fog computing systems are deployed very close to the end users in a widely distributed manner. Fog computing nodes hosted must possess sufficient computing power and storage capacity to handle the resource intensive user requests.

Fog Computing in Action

How does all of this work in the real world? Consider this example: A traffic light system in Chicago is equipped with smart sensors. It is Tuesday morning, the day of the big parade after the Chicago Cubs first World Series championship in more than 100 years. A surge of traffic into the city is expected as revelers come to celebrate their teams win. As the traffic builds, data are collected from individual traffic lights.

The open-source application developed by the city to adjust light patterns and timing is running on each edge device. The app automatically makes adjustments to light patterns in real time, at the edge, working around traffic impediments as they arise and diminish. Traffic delays are kept to a minimum, and fans spend less time in their cars and have more time to enjoy their big day.

In the traffic light example, there is little value in sending a steady stream of everyday traffic sensor data to the cloud for storage and analysis. The civic engineers have a good handle on normal traffic patterns. The relevant data is sensor information that diverges from the norm, such as the data from parade day. That data would be sent up to the cloud and analyzed, supporting predictive analysis and allowing the city to adjust and improve its traffic applications response to future traffic anomalies.

Fog, Cloud and IoT Together

The IoT promises to bring the advantages of cloud computing to an earthly level, permeating every home, vehicle, and workplace with smart, Internet-connected devices. But as dependence on our newly connected devices increases along with the benefits and uses of a maturing technology, the reliability of the gateways that make the IoT a functional reality must increase and make uptime a near guarantee.

Using robust edge gateways would strengthen the entire IoT infrastructure by absorbing the brunt of processing work before passing it to the cloud. Fog computing can meet requirements for reliable low latency responses by processing at the edge and can deal with high traffic volume by using smart filtering and selective transmission. In this way, smart edge gateways can either handle or intelligently redirect the millions of tasks coming from the myriad sensors and monitors of the IoT, transmitting only summary and exception data to the cloud proper.

The success of fog computing hinges directly on: the resilience of those smart gateways directing countless tasks on an internet teeming with IoT devices. IT resilience will be a necessity for the business continuity of IoT operations, with redundancy, security, monitoring of power and cooling and failover solutions in place to ensure maximum uptime. According to Gartner, every hour of downtime can cost an organization up to $300,000. Speed of deployment, cost-effective scalability, and ease of management with limited resources are also chief concerns.

This evolutionary shift from the cloud to the fog makes complete sense. The original cloud boom began when mobile devices like smartphones and tablets were becoming all the rage. Back then, these devices were weak on computing power, and mobile networks were both slow and unreliable. Therefore, it made complete sense to use a hub-and-spoke cloud architecture for all communications.
But now that most of us are blanketed in reliable 4G technologies, and mobile devices now rival many PCs in terms of computational power, it makes sense to move from a hub-and-spoke model to one that resembles a mesh or edge computing data architecture. Doing so eliminates bandwidth bottlenecks and latency issues that will undoubtedly cripple the IoT movement in the long run.

So if you thought that cloud computing was the pinnacle of infrastructure designs for the foreseeable future, think again. If we’re talking billions of devices and instant communication, current cloud models won’t be able to handle the load. Fortunately, advances in mobile processing power and wireless bandwidth have allowed many to design a far more capable architecture that brings us out of the clouds and into the fog.

Categories: Internet Of Things
Tags: Big Data, Cloud, cloud computing, fog computing, infrastructure, internet of things, IoT, sensor data, sensors

About Ahmed Banafa

Prof. Ahmed Banafa has extensive experience in research, operations and management, with focus on IoT, Blockchain, Cybersecurity and AI. He is a reviewer and a technical contributor for the publication of several technical books. He served as an instructor at well-known universities and colleges, including the Stanford University, University of California, Berkeley; California State University-East Bay; San Jose State University; and University of Massachusetts. He is the recipient of several awards, including Distinguished Tenured Staff Award, Instructor of the year for 4 years in a row, and Certificate of Honor from the City and County of San Francisco. He was named as No.1 tech voice to follow, technology fortune teller and influencer by LinkedIn in 2018 by LinkedIn, his researches featured in many reputable sites and magazines including Forbes, IEEE and MIT Technology Review, and Interviewed by ABC, CBS, NBC,BBC, NPR and Fox TV and Radio stations. He is a member of MIT Technology Review Global Panel. He studied Electrical Engineering at Lehigh University, Cybersecurity at Harvard University and Digital Transformation at Massachusetts Institute of Technology (MIT). He is the author of the books: 'Secure and Smart Internet of Things (IoT) using Blockchain and Artificial Intelligence (AI)' , and 'Blockchain Technology and Applications' . Winner of Author & Artist Award 2019 of San Jose State University for "Secure and Smart IoT" Book.

Primary Sidebar

E-mail Newsletter

Sign up to receive email updates daily and to hear what's going on with us!

Publish
AN Article
Submit
a press release
List
AN Event
Create
A Job Post

Related Articles

IoT protocol and commnication standards

March 22, 2023 By Patrick R

Visual AI: The Shiny Technological Object That Glitters Like Gold

March 17, 2023 By sgold

Beyond the Buzzwords: How ChatGPT Stands Out as a Next-Generation Language Model

March 17, 2023 By marketing.innowise

Related Jobs

  • Software Engineer | South Yorkshire, GB - February 07, 2023
  • Software Engineer with C# .net Investment House | London, GB - February 07, 2023
  • Senior Java Developer | London, GB - February 07, 2023
  • Software Engineer – Growing Digital Media Company | London, GB - February 07, 2023
  • LBG Returners – Senior Data Analyst | Chester Moor, GB - February 07, 2023
More Jobs

Tags

AI Amazon analysis analytics application applications Artificial Intelligence benefits BI Big Data business China Cloud Companies company costs crypto Data design development digital engineer environment experience financial future government Group health information learning machine learning mobile news public research security services share skills social social media software strategy technology

Related Events

  • 6th Middle East Banking AI & Analytics Summit 2023 | Riyadh, Saudi Arabia - May 10, 2023
  • Data Science Salon NYC: AI & Machine Learning in Finance & Technology | The Theater Center - December 7, 2022
  • Big Data LDN 2023 | Olympia London - September 20, 2023
More events

Related Online Courses

  • Google Chrome Security and Extensions for Beginners
  • Pre-MBA Statistics
  • Relational Databases for Beginners
More courses

Footer


Datafloq is the one-stop source for big data, blockchain and artificial intelligence. We offer information, insights and opportunities to drive innovation with emerging technologies.

  • Facebook
  • LinkedIn
  • RSS
  • Twitter

Recent

  • How Is Robotic Micro Fulfillment Changing Distribution?
  • IoT protocol and commnication standards
  • Top 6 Cybersecurity Certification Programs in 2023
  • How To Build a Leading Stock Trading Mobile App Platform? Complete Process with Tech Stack & Cost
  • A Beginner’s Guide to Reverse ETL: Concept and Use Cases

Search

Tags

AI Amazon analysis analytics application applications Artificial Intelligence benefits BI Big Data business China Cloud Companies company costs crypto Data design development digital engineer environment experience financial future government Group health information learning machine learning mobile news public research security services share skills social social media software strategy technology

Copyright © 2023 Datafloq
HTML Sitemap| Privacy| Terms| Cookies

  • Facebook
  • Twitter
  • LinkedIn
  • WhatsApp

In order to optimize the website and to continuously improve Datafloq, we use cookies. For more information click here.

settings

Dear visitor,
Thank you for visiting Datafloq. If you find our content interesting, please subscribe to our weekly newsletter:

Did you know that you can publish job posts for free on Datafloq? You can start immediately and find the best candidates for free! Click here to get started.

Not Now Subscribe

Thanks for visiting Datafloq
If you enjoyed our content on emerging technologies, why not subscribe to our weekly newsletter to receive the latest news straight into your mailbox?

Subscribe

No thanks

Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

Necessary Cookies

Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.

If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.

Marketing cookies

This website uses Google Analytics to collect anonymous information such as the number of visitors to the site, and the most popular pages.

Keeping this cookie enabled helps us to improve our website.

Please enable Strictly Necessary Cookies first so that we can save your preferences!