• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
  • Articles
  • News
  • Events
  • Advertize
  • Jobs
  • Courses
  • Contact
  • (0)
  • LoginRegister
    • Facebook
    • LinkedIn
    • RSS
      Articles
      News
      Events
      Job Posts
    • Twitter
Datafloq

Datafloq

Data and Technology Insights

  • Categories
    • Big Data
    • Blockchain
    • Cloud
    • Internet Of Things
    • Metaverse
    • Robotics
    • Cybersecurity
    • Startups
    • Strategy
    • Technical
  • Big Data
  • Blockchain
  • Cloud
  • Metaverse
  • Internet Of Things
  • Robotics
  • Cybersecurity
  • Startups
  • Strategy
  • Technical

MapReduce

MapReduce is a programming model for processing and generating large data sets with a parallel, distributed algorithm on a cluster.Google spotlights data center inner workings | Tech news blog – CNET News.com Conceptually similar approaches have been very well known since 1995 with the Message Passing Interface standard having reduce and scatter operations. A MapReduce program is composed of a Map() procedure that performs filtering and sorting (such as sorting students by first name into queues, one queue for each name) and a Reduce() procedure that performs a summary operation (such as counting the number of students in each queue, yielding name frequencies). The “MapReduce System” (also called “infrastructure” or “framework”) orchestrates the processing by marshalling the distributed servers, running the various tasks in parallel, managing all communications and data transfers between the various parts of the system, and providing for redundancy and fault tolerance. The model is inspired by the map and reduce functions commonly used in functional programming, although their purpose in the MapReduce framework is not the same as in their original forms. The key contributions of the MapReduce framework are not the actual map and reduce functions, but the scalability and fault-tolerance achieved for a variety of applications by optimizing the execution engine once. As such, a single-threaded implementation of MapReduce (such as MongoDB) will usually not be faster than a traditional (non-MapReduce) implementation, any gains are usually only seen with multi-threaded implementations. The use of this model is beneficial only when the optimized distributed shuffle operation (which reduces network communication cost) and fault tolerance features of the MapReduce framework come into play. Optimizing the communication cost is essential to a good MapReduce algorithm. MapReduce libraries have been written in many programming languages, with different levels of optimization. A popular open-source implementation that has support for distributed shuffles is part of Apache Hadoop. The name MapReduce originally referred to the proprietary Google technology, but has since been genericized.

Primary Sidebar

E-mail Newsletter

Sign up to receive email updates daily and to hear what's going on with us!

Publish
AN Article
Submit
a press release
List
AN Event
Create
A Job Post

Jobs

  • Software Engineer | South Yorkshire, GB - February 07, 2023
  • Software Engineer with C# .net Investment House | London, GB - February 07, 2023
  • Senior Java Developer | London, GB - February 07, 2023
  • Software Engineer – Growing Digital Media Company | London, GB - February 07, 2023
  • LBG Returners – Senior Data Analyst | Chester Moor, GB - February 07, 2023
More Jobs
Host your website with Managed WordPress for $1.00/mo with GoDaddy!

Tags

AI Amazon analysis analytics app application Artificial Intelligence BI Big Data business China Cloud Companies company costs crypto customers Data design development digital environment experience future Google+ government information learning machine learning market mobile Musk news Other public research sales security share social social media software strategy technology twitter

News

  • X social media’s India, South Asia policy head Gupta resigns-sources
  • California governor vetoes bill banning robotrucks without safety drivers
  • Oracle spends more than $100 million on Ampere chips
  • KKR asks Telecom Italia to extend deadline for grid bid
  • Arm and Instacart add to losses after lukewarm analyst reports
More News

Related Online Courses

  • Oracle Cloud Data Management Foundations Workshop
  • Data Science at Scale
  • Statistics with Python
More courses

Footer


Datafloq is the one-stop source for big data, blockchain and artificial intelligence. We offer information, insights and opportunities to drive innovation with emerging technologies.

  • Facebook
  • LinkedIn
  • RSS
  • Twitter

Recent

  • 5 Reasons Why Modern Data Integration Gives You a Competitive Advantage
  • 5 Most Common Database Structures for Small Businesses
  • 6 Ways to Reduce IT Costs Through Observability
  • How is Big Data Analytics Used in Business? These 5 Use Cases Share Valuable Insights
  • How Realistic Are Self-Driving Cars?

Search

Tags

AI Amazon analysis analytics app application Artificial Intelligence BI Big Data business China Cloud Companies company costs crypto customers Data design development digital environment experience future Google+ government information learning machine learning market mobile Musk news Other public research sales security share social social media software strategy technology twitter

Copyright © 2023 Datafloq
HTML Sitemap| Privacy| Terms| Cookies

In order to optimize the website and to continuously improve Datafloq, we use cookies. For more information click here.

Dear visitor,
Thank you for visiting Datafloq. If you find our content interesting, please subscribe to our weekly newsletter:

Did you know that you can publish job posts for free on Datafloq? You can start immediately and find the best candidates for free! Click here to get started.

Not Now Subscribe

Thanks for visiting Datafloq
If you enjoyed our content on emerging technologies, why not subscribe to our weekly newsletter to receive the latest news straight into your mailbox?

Subscribe

No thanks

Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

Necessary Cookies

Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.

If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.

Marketing cookies

This website uses Google Analytics to collect anonymous information such as the number of visitors to the site, and the most popular pages.

Keeping this cookie enabled helps us to improve our website.

Please enable Strictly Necessary Cookies first so that we can save your preferences!