Data are of high quality if, “they are fit for their intended uses in operations, decision making and planning.” (J. M. Juran). Alternatively, data are deemed of high quality if they correctly represent the real-world construct to which they refer. Furthermore, apart from these definitions, as data volume increases, the question of internal consistency within data becomes paramount, regardless of fitness for use for any particular external purpose; e.g., a person’s age and birth date may conflict within different parts of the same database. The first views can often be in disagreement, even about the same set of data used for the same purpose. This article discusses the concept of data quality as it relates to business data processing, although of course other fields have their own data quality issues as well.