• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
  • Articles
  • News
  • Events
  • Advertize
  • Jobs
  • Courses
  • Contact
  • (0)
  • LoginRegister
    • Facebook
    • LinkedIn
    • RSS
      Articles
      News
      Events
      Job Posts
    • Twitter
Datafloq

Datafloq

Data and Technology Insights

  • Categories
    • Big Data
    • Blockchain
    • Cloud
    • Internet Of Things
    • Metaverse
    • Robotics
    • Cybersecurity
    • Startups
    • Strategy
    • Technical
  • Big Data
  • Blockchain
  • Cloud
  • Metaverse
  • Internet Of Things
  • Robotics
  • Cybersecurity
  • Startups
  • Strategy
  • Technical

Mathematics for Machine Learning: PCA

Coursera /
September 4, 2022
floq.to/rFkDZ

Join NowName: Mathematics for Machine Learning: PCA
Creator: Imperial College London
Category: Software > Computer Software > Educational Software
Topic: Math and Logic
Tag: algorithms, analysis, Data, knowledge, programming
Availability: In stock
Price: USD 69.00

This intermediate-level course introduces the mathematical foundations to derive Principal Component Analysis (PCA), a fundamental dimensionality reduction technique. We'll cover some basic statistics of data sets, such as mean values and variances, we'll compute distances and angles between vectors using inner products and derive orthogonal projections of data onto lower-dimensional subspaces. Using all these tools, we'll then derive PCA as a method that minimizes the average squared reconstruction error between data points and their reconstruction. At the end of this course, you'll be familiar with important mathematical concepts and you can implement PCA all by yourself.

If you're struggling, you'll find a set of jupyter notebooks that will allow you to explore properties of the techniques and walk you through what you need to do to get on track.


Interested in what the future will bring? Download our 2023 Technology Trends eBook for free.

Consent


If you are already an expert, this course may refresh some of your knowledge. The lectures, examples and exercises require: 1. Some ability of abstract thinking 2. Good background in linear algebra (e.g., matrix and vector algebra, linear independence, basis) 3. Basic background in multivariate calculus (e.g., partial derivatives, basic optimization) 4. Basic knowledge in python programming and numpy Disclaimer: This course is substantially more abstract and requires more programming than the other two courses of the specialization. However, this type of abstract thinking, algebraic manipulation and programming is necessary if you want to understand and develop machine learning algorithms.

Join this Online Course

Categories: Online Course
Tags: algorithms, analysis, Data, knowledge, programming

About Coursera

Primary Sidebar

E-mail Newsletter

Sign up to receive email updates daily and to hear what's going on with us!

Publish
AN Article
Submit
a press release
List
AN Event
Create
A Job Post

Jobs

  • Software Engineer | South Yorkshire, GB - February 07, 2023
  • Software Engineer with C# .net Investment House | London, GB - February 07, 2023
  • Senior Java Developer | London, GB - February 07, 2023
  • Software Engineer – Growing Digital Media Company | London, GB - February 07, 2023
  • LBG Returners – Senior Data Analyst | Chester Moor, GB - February 07, 2023
More Jobs

Tags

AI Amazon analysis analytics app application Artificial Intelligence BI Big Data blockchain business China Cloud Companies company costs crypto customers Data development digital environment experience future Google+ government information learning machine learning market mobile Musk news public research sales security share social social media software startup strategy technology twitter

News

  • Italy data protection agency opens ChatGPT probe on privacy concerns
  • Tencent applies for dual counter trading on Hong Kong exchange
  • Xpeng aims to roll out driver assistance software to all Chinese cities by 2024
  • Britain’s digital banks need support amid banking turmoil – trade body
  • China to examine U.S. chipmaker Micron’s products for cybersecurity risks
More News

Related Online Courses

  • Big Data – Capstone Project
  • Data Platform, Cloud Networking and AI in the Cloud
  • Social Science Approaches to the Study of Chinese Society Part 2
More courses

Footer


Datafloq is the one-stop source for big data, blockchain and artificial intelligence. We offer information, insights and opportunities to drive innovation with emerging technologies.

  • Facebook
  • LinkedIn
  • RSS
  • Twitter

Recent

  • 12 Data Quality Metrics That ACTUALLY Matter
  • How to Build Microservices with Node.js
  • How to Validate OpenAI GPT Model Performance with Text Summarization (Part 1)
  • What is Enterprise Application Integration (EAI), and How Should Your Company Approach It?
  • 5 Best Data Engineering Projects & Ideas for Beginners

Search

Tags

AI Amazon analysis analytics app application Artificial Intelligence BI Big Data blockchain business China Cloud Companies company costs crypto customers Data development digital environment experience future Google+ government information learning machine learning market mobile Musk news public research sales security share social social media software startup strategy technology twitter

Copyright © 2023 Datafloq
HTML Sitemap| Privacy| Terms| Cookies

  • Facebook
  • Twitter
  • LinkedIn
  • WhatsApp

In order to optimize the website and to continuously improve Datafloq, we use cookies. For more information click here.

settings

Dear visitor,
Thank you for visiting Datafloq. If you find our content interesting, please subscribe to our weekly newsletter:

Did you know that you can publish job posts for free on Datafloq? You can start immediately and find the best candidates for free! Click here to get started.

Not Now Subscribe

Thanks for visiting Datafloq
If you enjoyed our content on emerging technologies, why not subscribe to our weekly newsletter to receive the latest news straight into your mailbox?

Subscribe

No thanks

Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

Necessary Cookies

Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.

If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.

Marketing cookies

This website uses Google Analytics to collect anonymous information such as the number of visitors to the site, and the most popular pages.

Keeping this cookie enabled helps us to improve our website.

Please enable Strictly Necessary Cookies first so that we can save your preferences!