• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
  • Articles
  • News
  • Events
  • Advertize
  • Jobs
  • Courses
  • Contact
  • (0)
  • LoginRegister
    • Facebook
    • LinkedIn
    • RSS
      Articles
      News
      Events
      Job Posts
    • Twitter
Datafloq

Datafloq

Data and Technology Insights

  • Categories
    • Big Data
    • Blockchain
    • Cloud
    • Internet Of Things
    • Metaverse
    • Robotics
    • Cybersecurity
    • Startups
    • Strategy
    • Technical
  • Big Data
  • Blockchain
  • Cloud
  • Metaverse
  • Internet Of Things
  • Robotics
  • Cybersecurity
  • Startups
  • Strategy
  • Technical

Using Customer Data? Start With Clean Data

Martin Doyle / 4 min read.
January 28, 2015
Datafloq AI Score
×

Datafloq AI Score: 84

Datafloq enables anyone to contribute articles, but we value high-quality content. This means that we do not accept SEO link building content, spammy articles, clickbait, articles written by bots and especially not misinformation. Therefore, we have developed an AI, built using multiple built open-source and proprietary tools to instantly define whether an article is written by a human or a bot and determine the level of bias, objectivity, whether it is fact-based or not, sentiment and overall quality.

Articles published on Datafloq need to have a minimum AI score of 60% and we provide this graph to give more detailed information on how we rate this article. Please note that this is a work in progress and if you have any suggestions, feel free to contact us.

floq.to/sTNJ0

Office, the high street shoe retailer, has had something of a lucky escape when it comes to its data quality. Last week, the Information Commissioners Office decided not to levy a fine on the company for a massive data leak, although luck had its part to play in the outcome.

In May 2014, hackers gained access to Offices servers and stole customer information relating to more than a million past customers. Sensitive data, such as postal addresses, was exposed, and the hackers were also able to steal passwords from the database. Fortunately, none of this data appears to have been used for malicious purposes.

For many businesses, the consequences of a hack are severe. Fines, bad publicity and compensation payments can have serious consequences for profitability. This is why master data management is a key concept in information security, and achieving a state of security and consistency is critical.

Lucky Escapes

The reason the Office hack was so serious was because the database was so large, and so old. It contained out of data, dirty contact information records that should have been deleted when a new database was brought online. Instead of quickly merging the old database with the new one, Office held back and chose to sit on the old data as it decayed and sat neglected on a server nobody remembered was there.

The old database was taking up space, for one thing, and costing money by the by, but thats not the worst of Offices worries. It was stored in a location nobody monitored, and it was fast becoming a liability for the business without it even realising.

Unfortunately, when the hackers got in to the old database, there was plenty to steal. The data had not been deduplicated, matched and merged with new records. Whats more, the old database was unencrypted, and that was the final flaw that exposed this vast dataset to prying eyes.

According to Gartner, businesses have become accomplished at simply coping with bad data, rather than doing something about it. Rather than tackling the data quality challenges of merging data and perfecting it, Office chose to simply hide the data, which meant that customer details were held without proper checks and governance.

Dealing with Old Data

All businesses are faced with upgrades and data migration at some stage in their evolution, and the need for merging of datasets becomes greater as the business matures. Legacy systems get phased out and replaced, and employees ditch old ways of working when better solutions are brought online. Often, compliance guidelines force a change in the way data is stored and managed, and new team members can bring new systems and fresh ideas.

In Offices case, staff felt that migrating the old data was risky. One of its key concerns was an inability to match the old data to the new data. As such, there was a problem with duplicates from day one. But managing data properly means that the business needs to understand how data is being used. If that means dropping old databases completely, thats what has to be done.


Interested in what the future will bring? Download our 2023 Technology Trends eBook for free.

Consent

Yes, businesses are right to approach data migration with caution. Invalid entries are a huge source of data quality problems, and merging two datasets can be a source of huge data corruption. This can result in confusion for staff; fields that should contain fixed values may contain all kinds of invalid results, and this can even stop records from saving when they fail automatic validation checks.

Customer Control

Businesses that retain personal data have to work within the law, which compounds the risk that poor data quality presents. The holder of data must make sure that it is accurate, and held for a reasonable period of time. These requirements are not new, yet businesses are still failing to address the risk that poor data quality presents, and failing to spot the obvious danger signs early on.

Its easy to see why the Information Commissioner objected to the legacy system Office was using. It was uncontrolled, unmonitored and completely lacking updates. It could also be argued that customer data was held for far longer than it should have been, given that a newer system had already been brought online.

Lessons in Data Management

The Information Commissioners Office describes data as vulnerable. Using the same analogy, dirty data is data at its most exposed. This isnt a case of increasing security (although an unencrypted database is clearly going to be vulnerable). Its not simply a case of the IT department stepping up their controls.

In Article 5 of the Information Commissioners standards principles, theres a clear requirement for data to be deleted as soon as its no longer needed. Clearly, the Office data breach proves why this is so important, and there needs to be a clear process and policy in place. Old data should be disposed of, new data cleansed at the point of entry, and ageing data regularly checked and managed using automated data quality solutions.

Managing data is also far easier if you dont hold records you dont need. If you delete records that you know are out of date, there are fewer risks to the business when you try to merge them. If you remove known duplicates using data quality software, there are fewer risks of customers being inconvenienced with wasteful duplicate communications.

Planning for Success

Data quality initiatives require strategic planning and concerted effort, and that means treating old data exactly the same as new. Just as new entries are filtered using form fields and validation, old data should be subjected to the same standards and checks.

A customer data warehouse is a key business asset, and its an asset your customers expect you to value and protect. Data governance requires the right people, the right funding and sustained effort, but the reward is an error-free dataset that does not expose any party to unnecessary risk.

Categories: Big Data
Tags: Big Data, customer, customers

About Martin Doyle

Armed with qualifications in mechanical engineering, business and finance, and experience of running engineering and CRM businesses, Martin founded a successful CRM (Customer Relationship Management) software house in 1992, supplying systems to large, medium and small sized companies. Developing a deep understanding of the value of data, he became concerned that many organisations were making decisions based on poor quality data. To fill this gap in the market, he sold the CRM company and started DQ Global in 2002 to provide data quality solutions, with a mission to detect, correct and prevent data defects which undermine business decisions. Since then, DQ Global has become a global market leader, delivering enterprise-wide data solutions utilising leading edge technology. Martin has gained a wealth of knowledge and experience and has established himself as a Data Quality Improvement Evangelist and an industry expert.

Primary Sidebar

E-mail Newsletter

Sign up to receive email updates daily and to hear what's going on with us!

Publish
AN Article
Submit
a press release
List
AN Event
Create
A Job Post

Related Articles

What is Enterprise Application Integration (EAI), and How Should Your Company Approach It?

March 29, 2023 By Terry Wilson

5 Best Data Engineering Projects & Ideas for Beginners

March 29, 2023 By emily.joe685

Data Centre World Asia

March 29, 2023 By r.chan

Related Jobs

  • Software Engineer | South Yorkshire, GB - February 07, 2023
  • Software Engineer with C# .net Investment House | London, GB - February 07, 2023
  • Senior Java Developer | London, GB - February 07, 2023
  • Software Engineer – Growing Digital Media Company | London, GB - February 07, 2023
  • LBG Returners – Senior Data Analyst | Chester Moor, GB - February 07, 2023
More Jobs

Tags

AI Amazon analysis analytics app application Artificial Intelligence BI Big Data blockchain business China Cloud Companies company costs crypto customers Data development digital environment experience finance future Google+ government information learning machine learning market mobile Musk news public research security share social social media software startup strategy technology twitter

Related Events

  • 6th Middle East Banking AI & Analytics Summit 2023 | Riyadh, Saudi Arabia - May 10, 2023
  • Data Science Salon NYC: AI & Machine Learning in Finance & Technology | The Theater Center - December 7, 2022
  • Big Data LDN 2023 | Olympia London - September 20, 2023
More events

Related Online Courses

  • Professional Selling: Step 1 – Think Like a High-Performer
  • Big Data & AI World, Singapore
  • Big Data – Capstone Project
More courses

Footer


Datafloq is the one-stop source for big data, blockchain and artificial intelligence. We offer information, insights and opportunities to drive innovation with emerging technologies.

  • Facebook
  • LinkedIn
  • RSS
  • Twitter

Recent

  • How to Validate OpenAI GPT Model Performance with Text Summarization (Part 1)
  • What is Enterprise Application Integration (EAI), and How Should Your Company Approach It?
  • 5 Best Data Engineering Projects & Ideas for Beginners
  • Personalization Vs. Hyper-Personalization: Benefits, Limitations and Potential
  • Explaining data products lifecycle and their scope in management

Search

Tags

AI Amazon analysis analytics app application Artificial Intelligence BI Big Data blockchain business China Cloud Companies company costs crypto customers Data development digital environment experience finance future Google+ government information learning machine learning market mobile Musk news public research security share social social media software startup strategy technology twitter

Copyright © 2023 Datafloq
HTML Sitemap| Privacy| Terms| Cookies

  • Facebook
  • Twitter
  • LinkedIn
  • WhatsApp

In order to optimize the website and to continuously improve Datafloq, we use cookies. For more information click here.

settings

Dear visitor,
Thank you for visiting Datafloq. If you find our content interesting, please subscribe to our weekly newsletter:

Did you know that you can publish job posts for free on Datafloq? You can start immediately and find the best candidates for free! Click here to get started.

Not Now Subscribe

Thanks for visiting Datafloq
If you enjoyed our content on emerging technologies, why not subscribe to our weekly newsletter to receive the latest news straight into your mailbox?

Subscribe

No thanks

Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

Necessary Cookies

Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.

If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.

Marketing cookies

This website uses Google Analytics to collect anonymous information such as the number of visitors to the site, and the most popular pages.

Keeping this cookie enabled helps us to improve our website.

Please enable Strictly Necessary Cookies first so that we can save your preferences!