• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
  • Articles
  • News
  • Events
  • Advertize
  • Jobs
  • Courses
  • Contact
  • (0)
  • LoginRegister
    • Facebook
    • LinkedIn
    • RSS
      Articles
      News
      Events
      Job Posts
    • Twitter
Datafloq

Datafloq

Data and Technology Insights

  • Categories
    • Big Data
    • Blockchain
    • Cloud
    • Internet Of Things
    • Metaverse
    • Robotics
    • Cybersecurity
    • Startups
    • Strategy
    • Technical
  • Big Data
  • Blockchain
  • Cloud
  • Metaverse
  • Internet Of Things
  • Robotics
  • Cybersecurity
  • Startups
  • Strategy
  • Technical

Seven Myths About Big Data

Dr Mark van Rijmenam / 4 min read.
August 29, 2013
Datafloq AI Score
×

Datafloq AI Score: 55.67

Datafloq enables anyone to contribute articles, but we value high-quality content. This means that we do not accept SEO link building content, spammy articles, clickbait, articles written by bots and especially not misinformation. Therefore, we have developed an AI, built using multiple built open-source and proprietary tools to instantly define whether an article is written by a human or a bot and determine the level of bias, objectivity, whether it is fact-based or not, sentiment and overall quality.

Articles published on Datafloq need to have a minimum AI score of 60% and we provide this graph to give more detailed information on how we rate this article. Please note that this is a work in progress and if you have any suggestions, feel free to contact us.

floq.to/Ew1Ds

It may be clear that there is enough information to be found on the web regarding big data. Everyone has a different explanation of big data and what it can mean for organisations. With so much information around big data to be found, it is easy to become confused and to read the wrong information. So lets dispel some of the most common big data myths and big data strategies.

1. Big Data is New

90% of the available data has been created in the last two years and the term big data has been around 2005, when it was launched by OReilly Media in 2005.  However, the usage of big data and the need to understand all available data has been around much longer. There are a lot of examples of companies that were into big data before it was called big data. A well-known example is Walmart that has been using data analytics already for many years.

2. Big Data is Just a Hype

Big data is not something like social media, which indeed was a hype a few years back. At the beginning of social media everyone thought that social media was the Holy Grail, well it ended differently. Social media is just a marketing tool to better understand you customers. Big data on the other hand is a transformative trend that will mean a paradigm shift in all industries for all companies, big or small. The amount of data will only grow in the coming years and all that data can be turned into information that can be used to improve organisations in many different ways. Already, companies that have developed and implemented a big data strategy financially outperform their peers by 20%. This will only increase and companies that will not move into the direction of big data most probably will not be able to survive in the future.

3. You Need to Have a Lot of Data to Talk About Big Data

Big data does not necessarily have to be a lot of data. Although Volume is one of the three Vs that is generally used to describe big data, it is definitely not a requirement to have a minimum of for example a Petabyte of data. Especially the combination of different data sets (such as  combining company data with social data and public data ) provides a lot of insights and this can also happen with smaller data sets.


Interested in what the future will bring? Download our 2023 Technology Trends eBook for free.

Consent

4. Big Data is Only for Large Corporations

A small business has to look differently at big data, simply because less data is created. That does not mean however that small businesses cannot develop a big data strategy. Especially when small businesses start combining various data sets they can also obtain the insights that large corporations achieve with big data. It will however probably take a bit longer before small organizations will start to see the benefits of developing a big data strategy.

5. You Need to Hire a Big Data Scientist to Start With Big Data

There are many big data startups that offer innovative tools for companies as a SaaS or DaaS (Data-as-a-Service) solution. For each aspect of big data (processing, storing, analysing, visualizing) there are different startups that offer such a SaaS or DaaS solution. For these solutions there is no need at all to build a Hadoop cluster and to hire an expensive big data scientist or big data analyst.

6. Hadoop is the Holy Grail of Big Data

Hadoop offers a lot of advantages such as massive amounts of data that can be easily stored, processed and analyzed in a fraction of a second. It uses commodity hardware and can easily be scaled at relatively low costs. Combined with a fault tolerance system that copies all data several times over different clusters and nodes, Hadoop offers a lot of advantages. However, Hadoop is not the Holy Grail. There are quite some substantial disadvantages of Hadoop. Getting Hadoop operational is difficult and requires specialized engineers that are expensive. Subsequently cluster management is hard and debugging is pretty difficult and without a top layer real-time analytics is not possible. Therefore, using Hadoop is not a guarantee for success.

7. A Big Data Strategy is an IT Responsibility

Quite often, big data is seen as an IT matter, after all you need hardware and software to implement a big data strategy. It is true that the hardware and software need to be developed by highly skilled technical big data employees (in-house or outsourced). This is nothing strange, as the required IT of big data is different from what we have had so far. However, the required IT is merely a means to an end to achieve a big data strategy defined by the organization. This strategy could be to increase customer satisfaction or to increase revenue or to improve the operational efficiency and the route to achieve that strategy could be big data or any other solution for that matter. If the strategy is to increase customer satisfaction it would be strange to define it an IT matter or have the IT Director be the sponsor of the strategy. Therefore, big data is a strategy matter that should be dealt with, ideally, at board level.

Image Courtesy of Google

Categories: Big Data
Tags: Big Data, big data strategy, Data, Hadoop, hype, information, knowledge, myths, organisations

About Dr Mark van Rijmenam

Dr Mark van Rijmenam, CSP is a leading strategic futurist keynote speaker who thinks about how technology changes organisations, society and the metaverse. He is known as The Digital Speaker, and he is a 5x author and entrepreneur.

Primary Sidebar

E-mail Newsletter

Sign up to receive email updates daily and to hear what's going on with us!

Publish
AN Article
Submit
a press release
List
AN Event
Create
A Job Post

Related Articles

IMPACT: Operational & Business Transformation Summit

March 23, 2023 By carmen.cimino

How Is Robotic Micro Fulfillment Changing Distribution?

March 22, 2023 By Emily Newton

Why We Need AI for Air Quality

March 21, 2023 By Jane Marsh

Related Jobs

  • Software Engineer | South Yorkshire, GB - February 07, 2023
  • Software Engineer with C# .net Investment House | London, GB - February 07, 2023
  • Senior Java Developer | London, GB - February 07, 2023
  • Software Engineer – Growing Digital Media Company | London, GB - February 07, 2023
  • LBG Returners – Senior Data Analyst | Chester Moor, GB - February 07, 2023
More Jobs

Tags

AI Amazon analysis analytics app application Artificial Intelligence BI Big Data blockchain business China Cloud Companies company costs crypto Data development digital environment experience finance financial future Google+ government information machine learning market mobile Musk news public research security share skills social social media software startup strategy technology twitter

Related Events

  • 6th Middle East Banking AI & Analytics Summit 2023 | Riyadh, Saudi Arabia - May 10, 2023
  • Data Science Salon NYC: AI & Machine Learning in Finance & Technology | The Theater Center - December 7, 2022
  • Big Data LDN 2023 | Olympia London - September 20, 2023
More events

Related Online Courses

  • IMPACT: Operational & Business Transformation Summit
  • American History Through Baseball
  • Build automated speech systems with Azure Cognitive Services
More courses

Footer


Datafloq is the one-stop source for big data, blockchain and artificial intelligence. We offer information, insights and opportunities to drive innovation with emerging technologies.

  • Facebook
  • LinkedIn
  • RSS
  • Twitter

Recent

  • Microsoft Power BI -The Future of Healthcare’s Most Important Breakthrough
  • The Big Crunch of 2025: Is Your Data Safe from Quantum Computing?
  • From Data to Reality: Leveraging the Metaverse for Business Growth
  • How BlaBlaCar Built a Practical Data Mesh to Support Self-Service Analytics at Scale
  • How Blockchain Technology Can Enhance Fintech dApp Development

Search

Tags

AI Amazon analysis analytics app application Artificial Intelligence BI Big Data blockchain business China Cloud Companies company costs crypto Data development digital environment experience finance financial future Google+ government information machine learning market mobile Musk news public research security share skills social social media software startup strategy technology twitter

Copyright © 2023 Datafloq
HTML Sitemap| Privacy| Terms| Cookies

  • Facebook
  • Twitter
  • LinkedIn
  • WhatsApp

In order to optimize the website and to continuously improve Datafloq, we use cookies. For more information click here.

settings

Dear visitor,
Thank you for visiting Datafloq. If you find our content interesting, please subscribe to our weekly newsletter:

Did you know that you can publish job posts for free on Datafloq? You can start immediately and find the best candidates for free! Click here to get started.

Not Now Subscribe

Thanks for visiting Datafloq
If you enjoyed our content on emerging technologies, why not subscribe to our weekly newsletter to receive the latest news straight into your mailbox?

Subscribe

No thanks

Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

Necessary Cookies

Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.

If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.

Marketing cookies

This website uses Google Analytics to collect anonymous information such as the number of visitors to the site, and the most popular pages.

Keeping this cookie enabled helps us to improve our website.

Please enable Strictly Necessary Cookies first so that we can save your preferences!