• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
  • Articles
  • News
  • Events
  • Advertize
  • Jobs
  • Courses
  • Contact
  • (0)
  • LoginRegister
    • Facebook
    • LinkedIn
    • RSS
      Articles
      News
      Events
      Job Posts
    • Twitter
Datafloq

Datafloq

Data and Technology Insights

  • Categories
    • Big Data
    • Blockchain
    • Cloud
    • Internet Of Things
    • Metaverse
    • Robotics
    • Cybersecurity
    • Startups
    • Strategy
    • Technical
  • Big Data
  • Blockchain
  • Cloud
  • Metaverse
  • Internet Of Things
  • Robotics
  • Cybersecurity
  • Startups
  • Strategy
  • Technical

T-Mobile USA Cuts Downs Churn Rate By 50% With Big Data

Dr Mark van Rijmenam / 3 min read.
February 15, 2013
Datafloq AI Score
×

Datafloq AI Score: 86.67

Datafloq enables anyone to contribute articles, but we value high-quality content. This means that we do not accept SEO link building content, spammy articles, clickbait, articles written by bots and especially not misinformation. Therefore, we have developed an AI, built using multiple built open-source and proprietary tools to instantly define whether an article is written by a human or a bot and determine the level of bias, objectivity, whether it is fact-based or not, sentiment and overall quality.

Articles published on Datafloq need to have a minimum AI score of 60% and we provide this graph to give more detailed information on how we rate this article. Please note that this is a work in progress and if you have any suggestions, feel free to contact us.

floq.to/d718L

Telecom organisations are known from collecting massive amounts of data. Everything that customers are doing is registered: how long and when people call, direct messaging peaks, internet usage and so on. These are just some of the metrics being captured and if you have 33 million customers, as T-Mobile USA does, we are talking serious big data. Strangely enough, not many telecom organisations are putting all this big data to its use. T-Mobile USA does however and with their big data strategy they managed to bring down churn rates by 50% in just one quarter. Lets dive deeper into this best practice of how big data can bring revenue (or prevent it from going away).

In order to fully use all of their data, T-Mobile USA decided to combine a lot of subscriber and network data together among multiple databases and source systems. They used several tools to store all the data, analyse it, search it and visualize it. As such, the hardware is based on the Tableau Software to visualize all data. Backed by these technologies, they started using different data zones that are connected to business objectives:

  • Customer data zone: a 360 degree view of each customer used to attack customer dissatisfaction;
  • Product and Services zone: which products and services are used by whom and when in order to drive innovation;
  • Customer experience zone: what are the channels that interact with the customer and when? Used to regain and optimize service levels;
  • Business Operations zone: containing all billing & accounting information as well as the finance and risk management. Used to define the best areas for optimization and performance;
  • Supply Chain zone: How do the purchase-order, shipment and logistics operate. Used to drive innovation within the supply chain and to cut costs;
  • Network zone: All (raw) data that is stored to support management. Used to drive innovation and grow quality customers. 

These zones place physical data storages and network in a virtualized environment. The virtualized data zones help T-Mobile USA pinpoint where there are complex systems, differences in data definitions or incompatible data. It also helps preventing duplicate content or incorrect business rules as well as centralizes rule management.

But how do they tackle the churn rate? By using a tribal customer model. This model is based on the fact that there are people who have high influence on others due to their large social network and who are well connected to different (online) groups. If one of these customers switches telecom provider, it could cause a domino effect and lead others in his or her network to do the same. For each of these customers an additional Customer Lifetime Value is calculated, based on level of influence on other customers. This new CLV allows T-Mobile USA to determine to most valuable customers.


Interested in what the future will bring? Download our 2023 Technology Trends eBook for free.

Consent

Next to that, the churn expectancy of a customer is based on different analyses:

  • Billing analysis: this includes the way a customer uses the products of T-Mobile USA. How often and where and how long a user calls with whom, how many text-messages are sent to whom and his or her internet usage. If more and more calls are going towards a different provider this could indicate that the social network of the customer is switching, resulting in a higher chance that the customer will also switch.
  • Drop call analysis: if a user relocates to a different area and the data shows that the customer receives limited coverage in the new area, an alert is made and a customer-representative can offer a new phone or offer a free femtocell to prevent the customer from switching.
  • Sentiment analysis: predicts triggers and indicators of what the customer actions are going to be and how they think of T-Mobile USA. This helps them to proactively respond to any (upcoming) complaints.

These different analyses are combined into an integrated single-view for customer care. This system, called Quick View, offers agents and retail store associates multiple key indicators including the customer lifetime value in a split-second on one screen. Additional information regarding high-value subscribers is sent automatically to the agent as well as customer-specific offers such as a new service plan.

This tailor-made and customer-centric approach caused a drop in monthly leaving customers. From almost 100.000 customers leaving in the first quarter in 2011,
they managed to bring it down to 50.000 lost customers in the 2nd quarter in 2011. A remarkable achievement in such a short period of time. Since then, T-Mobile USA focuses on retaining its loyal, high-lifetime-customer-value, subscribers as well as upgrading its customers to higher quality products, leading to high customer satisfaction and additional revenue.

Categories: Big Data
Tags: Data

About Dr Mark van Rijmenam

Dr Mark van Rijmenam, CSP, is a leading strategic futurist and innovation keynote speaker who thinks about how technology changes organisations, society and the metaverse. He is known as The Digital Speaker, and he is a 5x author and entrepreneur.

Primary Sidebar

E-mail Newsletter

Sign up to receive email updates daily and to hear what's going on with us!

Publish
AN Article
Submit
a press release
List
AN Event
Create
A Job Post
Host your website with Managed WordPress for $1.00/mo with GoDaddy!

Related Articles

The Advantages of IT Staff Augmentation Over Traditional Hiring

May 4, 2023 By Mukesh Ram

The State of Digital Asset Management in 2023

May 3, 2023 By pimcoremkt

Test Data Management – Implementation Challenges and Tools Available

May 1, 2023 By yash.mehta262

Related Jobs

  • Software Engineer | South Yorkshire, GB - February 07, 2023
  • Software Engineer with C# .net Investment House | London, GB - February 07, 2023
  • Senior Java Developer | London, GB - February 07, 2023
  • Software Engineer – Growing Digital Media Company | London, GB - February 07, 2023
  • LBG Returners – Senior Data Analyst | Chester Moor, GB - February 07, 2023
More Jobs

Tags

AI Amazon analysis analytics app application Artificial Intelligence BI Big Data business China Cloud Companies company costs crypto customers Data design development digital environment experience future Google+ government industry information learning machine learning market mobile Musk news public research security services share social social media software strategy technology twitter

Related Events

  • 6th Middle East Banking AI & Analytics Summit 2023 | Riyadh, Saudi Arabia - May 10, 2023
  • Data Science Salon NYC: AI & Machine Learning in Finance & Technology | The Theater Center - December 7, 2022
  • Big Data LDN 2023 | Olympia London - September 20, 2023
More events

Related Online Courses

  • Oracle Cloud Data Management Foundations Workshop
  • Data Science at Scale
  • Statistics with Python
More courses

Footer


Datafloq is the one-stop source for big data, blockchain and artificial intelligence. We offer information, insights and opportunities to drive innovation with emerging technologies.

  • Facebook
  • LinkedIn
  • RSS
  • Twitter

Recent

  • 5 Reasons Why Modern Data Integration Gives You a Competitive Advantage
  • 5 Most Common Database Structures for Small Businesses
  • 6 Ways to Reduce IT Costs Through Observability
  • How is Big Data Analytics Used in Business? These 5 Use Cases Share Valuable Insights
  • How Realistic Are Self-Driving Cars?

Search

Tags

AI Amazon analysis analytics app application Artificial Intelligence BI Big Data business China Cloud Companies company costs crypto customers Data design development digital environment experience future Google+ government industry information learning machine learning market mobile Musk news public research security services share social social media software strategy technology twitter

Copyright © 2023 Datafloq
HTML Sitemap| Privacy| Terms| Cookies

  • Facebook
  • Twitter
  • LinkedIn
  • WhatsApp

In order to optimize the website and to continuously improve Datafloq, we use cookies. For more information click here.

settings

Dear visitor,
Thank you for visiting Datafloq. If you find our content interesting, please subscribe to our weekly newsletter:

Did you know that you can publish job posts for free on Datafloq? You can start immediately and find the best candidates for free! Click here to get started.

Not Now Subscribe

Thanks for visiting Datafloq
If you enjoyed our content on emerging technologies, why not subscribe to our weekly newsletter to receive the latest news straight into your mailbox?

Subscribe

No thanks

Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

Necessary Cookies

Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.

If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.

Marketing cookies

This website uses Google Analytics to collect anonymous information such as the number of visitors to the site, and the most popular pages.

Keeping this cookie enabled helps us to improve our website.

Please enable Strictly Necessary Cookies first so that we can save your preferences!